Spaces:
Sleeping
Sleeping
app.py
Browse files
app.py
CHANGED
|
@@ -1,63 +1,99 @@
|
|
| 1 |
import cv2
|
| 2 |
import numpy as np
|
| 3 |
from PIL import Image
|
| 4 |
-
import gradio as gr
|
| 5 |
-
from transformers import CLIPProcessor, CLIPModel
|
| 6 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
#
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
with torch.no_grad():
|
| 17 |
outputs = model(**inputs)
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
return
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
|
|
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
_, thresh = cv2.threshold(gray, 30, 255, cv2.THRESH_BINARY)
|
| 33 |
-
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
gr.Image(type="pil", label="Base Image"),
|
| 52 |
-
gr.Image(type="pil", label="Target Image")
|
| 53 |
-
],
|
| 54 |
-
outputs=[
|
| 55 |
-
gr.Textbox(label="Result"),
|
| 56 |
-
gr.Image(type="pil", label="Detected Object Region")
|
| 57 |
-
],
|
| 58 |
-
title="Automatic Object Detection + Material Classification",
|
| 59 |
-
description="Detect differences between base and target images, crop the changed region, and classify the material (plastic, metal, paper, cardboard, glass, trash)."
|
| 60 |
-
)
|
| 61 |
|
| 62 |
if __name__ == "__main__":
|
| 63 |
demo.launch()
|
|
|
|
| 1 |
import cv2
|
| 2 |
import numpy as np
|
| 3 |
from PIL import Image
|
|
|
|
|
|
|
| 4 |
import torch
|
| 5 |
+
import gradio as gr
|
| 6 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
| 7 |
+
|
| 8 |
+
# ---- Step 1: 模型加载 ----
|
| 9 |
+
MODEL_ID = "prithivMLmods/Trash-Net"
|
| 10 |
+
processor = AutoImageProcessor.from_pretrained(MODEL_ID)
|
| 11 |
+
model = AutoModelForImageClassification.from_pretrained(MODEL_ID)
|
| 12 |
+
|
| 13 |
+
# ---- Step 2: 专业裁剪(基于OpenCV结构化差异检测) ----
|
| 14 |
+
def smart_crop(base_img: Image.Image, new_img: Image.Image):
|
| 15 |
+
if base_img is None or new_img is None:
|
| 16 |
+
return None, "Missing image input."
|
| 17 |
+
|
| 18 |
+
# 转为OpenCV格式
|
| 19 |
+
base = np.array(base_img.convert("RGB"))
|
| 20 |
+
new = np.array(new_img.convert("RGB"))
|
| 21 |
+
base = cv2.resize(base, (224, 224))
|
| 22 |
+
new = cv2.resize(new, (224, 224))
|
| 23 |
|
| 24 |
+
# 转灰度 + 高斯模糊减少噪声
|
| 25 |
+
base_gray = cv2.GaussianBlur(cv2.cvtColor(base, cv2.COLOR_RGB2GRAY), (5,5), 0)
|
| 26 |
+
new_gray = cv2.GaussianBlur(cv2.cvtColor(new, cv2.COLOR_RGB2GRAY), (5,5), 0)
|
| 27 |
+
|
| 28 |
+
# 差异检测
|
| 29 |
+
diff = cv2.absdiff(base_gray, new_gray)
|
| 30 |
+
_, thresh = cv2.threshold(diff, 40, 255, cv2.THRESH_BINARY)
|
| 31 |
+
|
| 32 |
+
# 形态学操作:去噪 + 连通区域扩大
|
| 33 |
+
kernel = np.ones((5,5), np.uint8)
|
| 34 |
+
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)
|
| 35 |
+
thresh = cv2.dilate(thresh, kernel, iterations=2)
|
| 36 |
+
|
| 37 |
+
# 查找轮廓
|
| 38 |
+
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 39 |
+
if not contours:
|
| 40 |
+
return None, "No significant object difference detected."
|
| 41 |
|
| 42 |
+
# 找最大差异区域
|
| 43 |
+
contour = max(contours, key=cv2.contourArea)
|
| 44 |
+
x, y, w, h = cv2.boundingRect(contour)
|
| 45 |
+
|
| 46 |
+
# 裁剪区域并略微扩大边缘
|
| 47 |
+
margin = 10
|
| 48 |
+
x1 = max(0, x - margin)
|
| 49 |
+
y1 = max(0, y - margin)
|
| 50 |
+
x2 = min(new.shape[1], x + w + margin)
|
| 51 |
+
y2 = min(new.shape[0], y + h + margin)
|
| 52 |
+
|
| 53 |
+
cropped = new[y1:y2, x1:x2]
|
| 54 |
+
cropped_pil = Image.fromarray(cropped)
|
| 55 |
+
return cropped_pil, None
|
| 56 |
+
|
| 57 |
+
# ---- Step 3: TrashNet 分类 ----
|
| 58 |
+
def classify_trash(image: Image.Image):
|
| 59 |
+
if image is None:
|
| 60 |
+
return "No image to classify.", 0.0
|
| 61 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 62 |
with torch.no_grad():
|
| 63 |
outputs = model(**inputs)
|
| 64 |
+
preds = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 65 |
+
label = model.config.id2label[preds.argmax().item()]
|
| 66 |
+
confidence = preds.max().item()
|
| 67 |
+
return label, confidence
|
| 68 |
|
| 69 |
+
# ---- Step 4: 主逻辑 ----
|
| 70 |
+
def detect_and_classify(base_img, new_img):
|
| 71 |
+
if base_img is None or new_img is None:
|
| 72 |
+
return "⚠️ Please upload both base and new images.", None, None
|
| 73 |
|
| 74 |
+
cropped, error = smart_crop(base_img, new_img)
|
| 75 |
+
if error:
|
| 76 |
+
return f"⚠️ {error}", None, None
|
| 77 |
|
| 78 |
+
label, conf = classify_trash(cropped)
|
| 79 |
+
return f"✅ Object classified as: {label} ({conf*100:.2f}% confidence)", cropped, label
|
|
|
|
|
|
|
| 80 |
|
| 81 |
+
# ---- Step 5: Gradio 界面 ----
|
| 82 |
+
with gr.Blocks(title="Smart Trash Detector") as demo:
|
| 83 |
+
gr.Markdown("# ♻️ Smart Trash Detection (with professional background subtraction)\nUpload a **base image**, then a **new image**.")
|
| 84 |
+
|
| 85 |
+
with gr.Row():
|
| 86 |
+
base_img = gr.Image(label="Base Image", type="pil")
|
| 87 |
+
new_img = gr.Image(label="New Image", type="pil")
|
| 88 |
+
|
| 89 |
+
run_btn = gr.Button("Analyze and Classify")
|
| 90 |
+
|
| 91 |
+
with gr.Row():
|
| 92 |
+
result_text = gr.Textbox(label="Result")
|
| 93 |
+
result_crop = gr.Image(label="Detected Object (Cropped)")
|
| 94 |
+
result_label = gr.Textbox(label="Class")
|
| 95 |
+
|
| 96 |
+
run_btn.click(detect_and_classify, [base_img, new_img], [result_text, result_crop, result_label])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
if __name__ == "__main__":
|
| 99 |
demo.launch()
|