import cv2 import numpy as np from PIL import Image import torch import gradio as gr from transformers import AutoImageProcessor, AutoModelForImageClassification # ---- Step 1: 模型加载 ---- MODEL_ID = "prithivMLmods/Trash-Net" processor = AutoImageProcessor.from_pretrained(MODEL_ID) model = AutoModelForImageClassification.from_pretrained(MODEL_ID) # ---- Step 2: 专业裁剪(基于OpenCV结构化差异检测) ---- def smart_crop(base_img: Image.Image, new_img: Image.Image): if base_img is None or new_img is None: return None, "Missing image input." # 转为OpenCV格式 base = np.array(base_img.convert("RGB")) new = np.array(new_img.convert("RGB")) base = cv2.resize(base, (224, 224)) new = cv2.resize(new, (224, 224)) # 转灰度 + 高斯模糊减少噪声 base_gray = cv2.GaussianBlur(cv2.cvtColor(base, cv2.COLOR_RGB2GRAY), (5,5), 0) new_gray = cv2.GaussianBlur(cv2.cvtColor(new, cv2.COLOR_RGB2GRAY), (5,5), 0) # 差异检测 diff = cv2.absdiff(base_gray, new_gray) _, thresh = cv2.threshold(diff, 40, 255, cv2.THRESH_BINARY) # 形态学操作:去噪 + 连通区域扩大 kernel = np.ones((5,5), np.uint8) thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel) thresh = cv2.dilate(thresh, kernel, iterations=2) # 查找轮廓 contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if not contours: return None, "No significant object difference detected." # 找最大差异区域 contour = max(contours, key=cv2.contourArea) x, y, w, h = cv2.boundingRect(contour) # 裁剪区域并略微扩大边缘 margin = 10 x1 = max(0, x - margin) y1 = max(0, y - margin) x2 = min(new.shape[1], x + w + margin) y2 = min(new.shape[0], y + h + margin) cropped = new[y1:y2, x1:x2] cropped_pil = Image.fromarray(cropped) return cropped_pil, None # ---- Step 3: TrashNet 分类 ---- def classify_trash(image: Image.Image): if image is None: return "No image to classify.", 0.0 inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) preds = torch.nn.functional.softmax(outputs.logits, dim=-1) label = model.config.id2label[preds.argmax().item()] confidence = preds.max().item() return label, confidence # ---- Step 4: 主逻辑 ---- def detect_and_classify(base_img, new_img): if base_img is None or new_img is None: return "⚠️ Please upload both base and new images.", None, None cropped, error = smart_crop(base_img, new_img) if error: return f"⚠️ {error}", None, None label, conf = classify_trash(cropped) return f"✅ Object classified as: {label} ({conf*100:.2f}% confidence)", cropped, label # ---- Step 5: Gradio 界面 ---- with gr.Blocks(title="Smart Trash Detector") as demo: gr.Markdown("# ♻️ Smart Trash Detection (with professional background subtraction)\nUpload a **base image**, then a **new image**.") with gr.Row(): base_img = gr.Image(label="Base Image", type="pil") new_img = gr.Image(label="New Image", type="pil") run_btn = gr.Button("Analyze and Classify") with gr.Row(): result_text = gr.Textbox(label="Result") result_crop = gr.Image(label="Detected Object (Cropped)") result_label = gr.Textbox(label="Class") run_btn.click(detect_and_classify, [base_img, new_img], [result_text, result_crop, result_label]) if __name__ == "__main__": demo.launch()