Spaces:
Sleeping
Sleeping
Upload folder using huggingface_hub
Browse files
app.py
CHANGED
|
@@ -4,9 +4,9 @@ from typing import Dict, Tuple
|
|
| 4 |
import gradio as gr
|
| 5 |
import torch
|
| 6 |
from fastapi import FastAPI
|
| 7 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 8 |
from fastapi.middleware.cors import CORSMiddleware
|
| 9 |
from gradio.routes import mount_gradio_app
|
|
|
|
| 10 |
|
| 11 |
# --- Model setup ---
|
| 12 |
# Fine-tuned model (ton modèle entraîné)
|
|
@@ -25,11 +25,16 @@ mdl.eval()
|
|
| 25 |
|
| 26 |
# Chargement du modèle "non entraîné" : corps pré-entraîné + tête aléatoire
|
| 27 |
# On utilise from_pretrained(BASE_MODEL, num_labels=2) — la tête sera initialisée aléatoirement
|
| 28 |
-
mdl_head_random = AutoModelForSequenceClassification.from_pretrained(
|
|
|
|
|
|
|
| 29 |
mdl_head_random.eval()
|
| 30 |
|
|
|
|
| 31 |
# --- Prediction utilities ---
|
| 32 |
-
def predict_proba_from_model(
|
|
|
|
|
|
|
| 33 |
"""Return probability distribution over labels for a given text and model."""
|
| 34 |
inputs = tok(text, return_tensors="pt", truncation=True)
|
| 35 |
# Si tu veux forcer CPU (par ex. sur un HF Space sans GPU), pas de .to(device) ici
|
|
@@ -41,6 +46,7 @@ def predict_proba_from_model(model: AutoModelForSequenceClassification, text: st
|
|
| 41 |
probs = [probs]
|
| 42 |
return {LABELS[i]: float(probs[i]) for i in range(len(LABELS))}
|
| 43 |
|
|
|
|
| 44 |
def top_label_phrase(probs: Dict[str, float]) -> str:
|
| 45 |
"""
|
| 46 |
Transforme les probabilités en phrase demandée.
|
|
@@ -54,12 +60,14 @@ def top_label_phrase(probs: Dict[str, float]) -> str:
|
|
| 54 |
else:
|
| 55 |
return f"Avis négatif à {neg_prob * 100:.2f}% de probabilité"
|
| 56 |
|
|
|
|
| 57 |
# Fonctions exposées
|
| 58 |
def predict_label_only(text: str) -> str:
|
| 59 |
"""Fonction legacy qui renvoie juste le label du modèle fine-tuné (compatibilité)."""
|
| 60 |
probs = predict_proba_from_model(mdl, text)
|
| 61 |
return max(probs.keys(), key=lambda k: probs[k])
|
| 62 |
|
|
|
|
| 63 |
def predict_both_phrases(text: str) -> Tuple[str, str]:
|
| 64 |
"""
|
| 65 |
Renvoie deux phrases formatées :
|
|
@@ -74,13 +82,18 @@ def predict_both_phrases(text: str) -> Tuple[str, str]:
|
|
| 74 |
|
| 75 |
return phrase_ft, phrase_head_random
|
| 76 |
|
|
|
|
| 77 |
# --- Gradio interface ---
|
| 78 |
demo = gr.Interface(
|
| 79 |
fn=predict_both_phrases,
|
| 80 |
inputs=gr.Textbox(label="Texte (FR)", lines=4, value="Ce film est bon"),
|
| 81 |
outputs=[
|
| 82 |
-
gr.Textbox(
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
],
|
| 85 |
examples=[
|
| 86 |
["Ce film est une merveille, j'ai adoré !"],
|
|
@@ -101,10 +114,12 @@ app.add_middleware(
|
|
| 101 |
allow_headers=["*"],
|
| 102 |
)
|
| 103 |
|
|
|
|
| 104 |
@app.get("/healthz")
|
| 105 |
def healthz():
|
| 106 |
return {"status": "ok", "model": MODEL_ID, "base_model_for_compare": BASE_MODEL}
|
| 107 |
|
|
|
|
| 108 |
@app.post("/predict")
|
| 109 |
def predict_api(item: dict):
|
| 110 |
"""
|
|
@@ -121,10 +136,12 @@ def predict_api(item: dict):
|
|
| 121 |
probs_head_random = predict_proba_from_model(mdl_head_random, text)
|
| 122 |
return {"fine_tuned": probs_ft, "head_random": probs_head_random}
|
| 123 |
|
|
|
|
| 124 |
# --- Mount Gradio at root (for HF Space) ---
|
| 125 |
mount_gradio_app(app, demo, path="/")
|
| 126 |
|
| 127 |
# --- Optional: run locally ---
|
| 128 |
if __name__ == "__main__":
|
| 129 |
import uvicorn
|
|
|
|
| 130 |
uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)
|
|
|
|
| 4 |
import gradio as gr
|
| 5 |
import torch
|
| 6 |
from fastapi import FastAPI
|
|
|
|
| 7 |
from fastapi.middleware.cors import CORSMiddleware
|
| 8 |
from gradio.routes import mount_gradio_app
|
| 9 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 10 |
|
| 11 |
# --- Model setup ---
|
| 12 |
# Fine-tuned model (ton modèle entraîné)
|
|
|
|
| 25 |
|
| 26 |
# Chargement du modèle "non entraîné" : corps pré-entraîné + tête aléatoire
|
| 27 |
# On utilise from_pretrained(BASE_MODEL, num_labels=2) — la tête sera initialisée aléatoirement
|
| 28 |
+
mdl_head_random = AutoModelForSequenceClassification.from_pretrained(
|
| 29 |
+
BASE_MODEL, num_labels=2
|
| 30 |
+
)
|
| 31 |
mdl_head_random.eval()
|
| 32 |
|
| 33 |
+
|
| 34 |
# --- Prediction utilities ---
|
| 35 |
+
def predict_proba_from_model(
|
| 36 |
+
model: AutoModelForSequenceClassification, text: str
|
| 37 |
+
) -> Dict[str, float]:
|
| 38 |
"""Return probability distribution over labels for a given text and model."""
|
| 39 |
inputs = tok(text, return_tensors="pt", truncation=True)
|
| 40 |
# Si tu veux forcer CPU (par ex. sur un HF Space sans GPU), pas de .to(device) ici
|
|
|
|
| 46 |
probs = [probs]
|
| 47 |
return {LABELS[i]: float(probs[i]) for i in range(len(LABELS))}
|
| 48 |
|
| 49 |
+
|
| 50 |
def top_label_phrase(probs: Dict[str, float]) -> str:
|
| 51 |
"""
|
| 52 |
Transforme les probabilités en phrase demandée.
|
|
|
|
| 60 |
else:
|
| 61 |
return f"Avis négatif à {neg_prob * 100:.2f}% de probabilité"
|
| 62 |
|
| 63 |
+
|
| 64 |
# Fonctions exposées
|
| 65 |
def predict_label_only(text: str) -> str:
|
| 66 |
"""Fonction legacy qui renvoie juste le label du modèle fine-tuné (compatibilité)."""
|
| 67 |
probs = predict_proba_from_model(mdl, text)
|
| 68 |
return max(probs.keys(), key=lambda k: probs[k])
|
| 69 |
|
| 70 |
+
|
| 71 |
def predict_both_phrases(text: str) -> Tuple[str, str]:
|
| 72 |
"""
|
| 73 |
Renvoie deux phrases formatées :
|
|
|
|
| 82 |
|
| 83 |
return phrase_ft, phrase_head_random
|
| 84 |
|
| 85 |
+
|
| 86 |
# --- Gradio interface ---
|
| 87 |
demo = gr.Interface(
|
| 88 |
fn=predict_both_phrases,
|
| 89 |
inputs=gr.Textbox(label="Texte (FR)", lines=4, value="Ce film est bon"),
|
| 90 |
outputs=[
|
| 91 |
+
gr.Textbox(
|
| 92 |
+
label=f"Modèle {BASE_MODEL} fine-tuné ({MODEL_ID})", interactive=False
|
| 93 |
+
),
|
| 94 |
+
gr.Textbox(
|
| 95 |
+
label=f"Modèle {BASE_MODEL} non-entrainé (tête random)", interactive=False
|
| 96 |
+
),
|
| 97 |
],
|
| 98 |
examples=[
|
| 99 |
["Ce film est une merveille, j'ai adoré !"],
|
|
|
|
| 114 |
allow_headers=["*"],
|
| 115 |
)
|
| 116 |
|
| 117 |
+
|
| 118 |
@app.get("/healthz")
|
| 119 |
def healthz():
|
| 120 |
return {"status": "ok", "model": MODEL_ID, "base_model_for_compare": BASE_MODEL}
|
| 121 |
|
| 122 |
+
|
| 123 |
@app.post("/predict")
|
| 124 |
def predict_api(item: dict):
|
| 125 |
"""
|
|
|
|
| 136 |
probs_head_random = predict_proba_from_model(mdl_head_random, text)
|
| 137 |
return {"fine_tuned": probs_ft, "head_random": probs_head_random}
|
| 138 |
|
| 139 |
+
|
| 140 |
# --- Mount Gradio at root (for HF Space) ---
|
| 141 |
mount_gradio_app(app, demo, path="/")
|
| 142 |
|
| 143 |
# --- Optional: run locally ---
|
| 144 |
if __name__ == "__main__":
|
| 145 |
import uvicorn
|
| 146 |
+
|
| 147 |
uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)
|