Spaces:
Running
Running
| import torch | |
| import torch.nn as nn | |
| from .constants import BOS_TOKEN | |
| class GreedySearch(nn.Module): | |
| def __init__(self, encoder, decoder, embedding, device): | |
| super().__init__() | |
| self.encoder = encoder | |
| self.decoder = decoder | |
| self.embedding = embedding | |
| self.device = device | |
| def forward(self, x, input_length, max_length): | |
| encoder_outputs, hidden = self.encoder(x, input_length) | |
| decoder_hidden = hidden[:self.decoder.num_layers] | |
| decoder_input = torch.ones(1, 1, device=self.device, dtype=torch.long) * BOS_TOKEN | |
| all_tokens = torch.zeros([0], device=self.device, dtype=torch.long) | |
| all_scores = torch.zeros([0], device=self.device) | |
| for _ in range(max_length): | |
| decoder_outputs, decoder_hidden = self.decoder(decoder_input, decoder_hidden, encoder_outputs) | |
| decoder_scores, decoder_input = torch.max(decoder_outputs, dim=1) | |
| all_tokens = torch.cat((all_tokens, decoder_input), dim=0) | |
| all_scores = torch.cat((all_scores, decoder_scores), dim=0) | |
| decoder_input.unsqueeze_(0) | |
| return all_tokens, all_scores |