Spaces:
Sleeping
Sleeping
| import torch | |
| from torchvision import transforms | |
| from PIL import Image | |
| from model import WasteCNN # Import the model architecture | |
| def predict_waste(image_path): | |
| # Load the model | |
| model = WasteCNN() | |
| model.load_state_dict(torch.load('waste_classifier.pth', map_location=torch.device('cpu'))) | |
| model.eval() | |
| # Prepare the image | |
| transform = transforms.Compose([ | |
| transforms.Resize((128, 128)), | |
| transforms.ToTensor(), | |
| ]) | |
| image = Image.open(image_path).convert('RGB') | |
| image = transform(image).unsqueeze(0) # Add batch dimension | |
| # Make prediction | |
| with torch.no_grad(): | |
| output = model(image) | |
| _, predicted = torch.max(output, 1) | |
| return "Dry Waste" if predicted.item() == 0 else "Wet Waste" | |
| if __name__ == "__main__": | |
| # Example usage | |
| image_path = input("Enter the path to your waste image: ") | |
| result = predict_waste(image_path) | |
| print(f"Prediction: {result}") |