File size: 25,343 Bytes
c3418e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 |
"""
Model Architecture for Speaker Profiling
Supports multiple encoders: WavLM, HuBERT, Wav2Vec2, Whisper, ECAPA-TDNN
Architecture: Encoder + Attentive Pooling + LayerNorm + Classification Heads
"""
import logging
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import (
WavLMModel,
HubertModel,
Wav2Vec2Model,
WhisperModel,
AutoConfig
)
# SpeechBrain ECAPA-TDNN support - lazy import to avoid torchaudio issues
SPEECHBRAIN_AVAILABLE = None # Will be set on first use
EncoderClassifier = None # Will be imported lazily
def _check_speechbrain():
"""Lazily check and import SpeechBrain"""
global SPEECHBRAIN_AVAILABLE, EncoderClassifier
if SPEECHBRAIN_AVAILABLE is None:
try:
from speechbrain.inference.speaker import EncoderClassifier as _EncoderClassifier
EncoderClassifier = _EncoderClassifier
SPEECHBRAIN_AVAILABLE = True
except (ImportError, AttributeError) as e:
SPEECHBRAIN_AVAILABLE = False
logger.warning(f"SpeechBrain not available: {e}")
return SPEECHBRAIN_AVAILABLE
logger = logging.getLogger("speaker_profiling")
# ECAPA-TDNN wrapper class for consistent interface
class ECAPATDNNEncoder(nn.Module):
"""
Wrapper for SpeechBrain ECAPA-TDNN encoder.
ECAPA-TDNN outputs fixed-size embeddings (192 or 512 dim) instead of
frame-level features like WavLM/HuBERT. This wrapper handles the difference.
Supported models:
- speechbrain/spkrec-ecapa-voxceleb: 192-dim embeddings
- speechbrain/spkrec-xvect-voxceleb: 512-dim embeddings (x-vector)
"""
def __init__(self, model_name: str = "speechbrain/spkrec-ecapa-voxceleb"):
super().__init__()
# Lazy import SpeechBrain
if not _check_speechbrain():
raise ImportError(
"SpeechBrain is required for ECAPA-TDNN. "
"Install with: pip install speechbrain"
)
self.model_name = model_name
# Detect if CUDA is available
device = "cuda" if torch.cuda.is_available() else "cpu"
self.encoder = EncoderClassifier.from_hparams(
source=model_name,
savedir=f"pretrained_models/{model_name.split('/')[-1]}",
run_opts={"device": device}
)
# Force float32 for all encoder parameters
self.encoder.mods.float()
# Determine embedding size
if "ecapa" in model_name.lower():
self.embedding_size = 192
elif "xvect" in model_name.lower():
self.embedding_size = 512
else:
self.embedding_size = 192 # default
# Config-like object for compatibility
class Config:
def __init__(self, hidden_size):
self.hidden_size = hidden_size
self.config = Config(self.embedding_size)
# Track current device
self._current_device = device
def forward(self, input_values: torch.Tensor, attention_mask: torch.Tensor = None):
"""
Extract embeddings from audio.
Args:
input_values: Audio waveform [B, T]
attention_mask: Not used for ECAPA-TDNN
Returns:
Object with last_hidden_state attribute [B, 1, H]
"""
# Get device from input
device = input_values.device
# Move encoder to same device as input if needed
if str(device) != str(self._current_device):
self.encoder.to(device)
self.encoder.mods.float() # Ensure float32 after move
self._current_device = device
# Ensure input is float32 and on correct device
input_values = input_values.float().to(device)
# SpeechBrain expects [B, T] audio at 16kHz
# encode_batch handles feature extraction internally
with torch.no_grad():
# Set encoder to eval mode to handle BatchNorm properly
self.encoder.eval()
embeddings = self.encoder.encode_batch(input_values) # [B, 1, H]
# Ensure output is float32
embeddings = embeddings.float()
# Return object compatible with HuggingFace models
class Output:
def __init__(self, hidden_state):
self.last_hidden_state = hidden_state
return Output(embeddings)
# Encoder registry - maps model type to class and hidden size
ENCODER_REGISTRY = {
# WavLM variants
"microsoft/wavlm-base": {"class": WavLMModel, "hidden_size": 768},
"microsoft/wavlm-base-plus": {"class": WavLMModel, "hidden_size": 768},
"microsoft/wavlm-large": {"class": WavLMModel, "hidden_size": 1024},
# HuBERT variants
"facebook/hubert-base-ls960": {"class": HubertModel, "hidden_size": 768},
"facebook/hubert-large-ls960-ft": {"class": HubertModel, "hidden_size": 1024},
"facebook/hubert-xlarge-ls960-ft": {"class": HubertModel, "hidden_size": 1280},
# Wav2Vec2 variants
"facebook/wav2vec2-base": {"class": Wav2Vec2Model, "hidden_size": 768},
"facebook/wav2vec2-base-960h": {"class": Wav2Vec2Model, "hidden_size": 768},
"facebook/wav2vec2-large": {"class": Wav2Vec2Model, "hidden_size": 1024},
"facebook/wav2vec2-large-960h": {"class": Wav2Vec2Model, "hidden_size": 1024},
"facebook/wav2vec2-xls-r-300m": {"class": Wav2Vec2Model, "hidden_size": 1024},
# Vietnamese Wav2Vec2 (VLSP2020)
"nguyenvulebinh/wav2vec2-base-vi-vlsp2020": {"class": Wav2Vec2Model, "hidden_size": 768},
# Whisper variants (encoder only)
"openai/whisper-tiny": {"class": WhisperModel, "hidden_size": 384, "is_whisper": True},
"openai/whisper-base": {"class": WhisperModel, "hidden_size": 512, "is_whisper": True},
"openai/whisper-small": {"class": WhisperModel, "hidden_size": 768, "is_whisper": True},
"openai/whisper-medium": {"class": WhisperModel, "hidden_size": 1024, "is_whisper": True},
"openai/whisper-large": {"class": WhisperModel, "hidden_size": 1280, "is_whisper": True},
"openai/whisper-large-v2": {"class": WhisperModel, "hidden_size": 1280, "is_whisper": True},
"openai/whisper-large-v3": {"class": WhisperModel, "hidden_size": 1280, "is_whisper": True},
# PhoWhisper - Vietnamese fine-tuned Whisper (VinAI)
"vinai/PhoWhisper-tiny": {"class": WhisperModel, "hidden_size": 384, "is_whisper": True},
"vinai/PhoWhisper-base": {"class": WhisperModel, "hidden_size": 512, "is_whisper": True},
"vinai/PhoWhisper-small": {"class": WhisperModel, "hidden_size": 768, "is_whisper": True},
"vinai/PhoWhisper-medium": {"class": WhisperModel, "hidden_size": 1024, "is_whisper": True},
"vinai/PhoWhisper-large": {"class": WhisperModel, "hidden_size": 1280, "is_whisper": True},
# ECAPA-TDNN (SpeechBrain)
"speechbrain/spkrec-ecapa-voxceleb": {
"class": ECAPATDNNEncoder,
"hidden_size": 192,
"is_ecapa": True
},
"speechbrain/spkrec-xvect-voxceleb": {
"class": ECAPATDNNEncoder,
"hidden_size": 512,
"is_ecapa": True
},
}
def get_encoder_info(model_name: str) -> dict:
"""Get encoder class and hidden size for a model name"""
if model_name in ENCODER_REGISTRY:
return ENCODER_REGISTRY[model_name]
# Check for ECAPA-TDNN / SpeechBrain models
# Note: We don't check SPEECHBRAIN_AVAILABLE here - the actual import
# will happen lazily in ECAPATDNNEncoder.__init__() when the model is used
if 'ecapa' in model_name.lower() or 'speechbrain' in model_name.lower():
hidden_size = 512 if 'xvect' in model_name.lower() else 192
return {"class": ECAPATDNNEncoder, "hidden_size": hidden_size, "is_ecapa": True}
# Try to auto-detect from config
try:
config = AutoConfig.from_pretrained(model_name)
hidden_size = getattr(config, 'hidden_size', 768)
if 'wavlm' in model_name.lower():
return {"class": WavLMModel, "hidden_size": hidden_size}
elif 'hubert' in model_name.lower():
return {"class": HubertModel, "hidden_size": hidden_size}
elif 'wav2vec2' in model_name.lower():
return {"class": Wav2Vec2Model, "hidden_size": hidden_size}
elif 'whisper' in model_name.lower() or 'phowhisper' in model_name.lower():
return {"class": WhisperModel, "hidden_size": hidden_size, "is_whisper": True}
else:
# Default to Wav2Vec2 architecture
return {"class": Wav2Vec2Model, "hidden_size": hidden_size}
except Exception as e:
logger.warning(f"Could not auto-detect encoder for {model_name}: {e}")
return {"class": WavLMModel, "hidden_size": 768}
class AttentivePooling(nn.Module):
"""
Attention-based pooling for temporal aggregation
Takes sequence of hidden states and produces a single vector
by computing attention weights and performing weighted sum.
"""
def __init__(self, hidden_size: int):
super().__init__()
self.attention = nn.Sequential(
nn.Linear(hidden_size, hidden_size),
nn.Tanh(),
nn.Linear(hidden_size, 1, bias=False)
)
def forward(self, x: torch.Tensor, mask: torch.Tensor = None):
"""
Args:
x: Hidden states [B, T, H]
mask: Attention mask [B, T]
Returns:
pooled: Pooled representation [B, H]
attn_weights: Attention weights [B, T]
"""
attn_weights = self.attention(x) # [B, T, 1]
if mask is not None:
mask = mask.unsqueeze(-1)
attn_weights = attn_weights.masked_fill(mask == 0, -1e9)
attn_weights = F.softmax(attn_weights, dim=1)
pooled = torch.sum(x * attn_weights, dim=1)
return pooled, attn_weights.squeeze(-1)
class MultiTaskSpeakerModel(nn.Module):
"""
Multi-task model for gender and dialect classification
Architecture:
Audio -> Encoder (WavLM/HuBERT/Wav2Vec2/Whisper/ECAPA-TDNN) -> Last Hidden [B,T,H]
|
Attentive Pooling [B,H] (skipped for ECAPA-TDNN)
|
Layer Normalization
|
Dropout(0.1)
|
+---------------+---------------+
| |
Gender Head (2 layers) Dialect Head (3 layers)
| |
[B,2] [B,3]
Supported encoders:
- WavLM: microsoft/wavlm-base-plus, microsoft/wavlm-large
- HuBERT: facebook/hubert-base-ls960, facebook/hubert-large-ls960-ft
- Wav2Vec2: facebook/wav2vec2-base, facebook/wav2vec2-large-960h
- Whisper: openai/whisper-base, openai/whisper-small, openai/whisper-medium
- ECAPA-TDNN: speechbrain/spkrec-ecapa-voxceleb (192-dim embeddings)
Args:
model_name: Pretrained encoder model name or path
num_genders: Number of gender classes (default: 2)
num_dialects: Number of dialect classes (default: 3)
dropout: Dropout probability (default: 0.1)
head_hidden_dim: Hidden dimension for classification heads (default: 256)
freeze_encoder: Whether to freeze encoder (default: False)
dialect_loss_weight: Weight for dialect loss in multi-task learning (default: 3.0)
"""
def __init__(
self,
model_name: str,
num_genders: int = 2,
num_dialects: int = 3,
dropout: float = 0.1,
head_hidden_dim: int = 256,
freeze_encoder: bool = False,
dialect_loss_weight: float = 3.0
):
super().__init__()
self.model_name = model_name
self.dialect_loss_weight = dialect_loss_weight
# Get encoder info and load model
encoder_info = get_encoder_info(model_name)
encoder_class = encoder_info["class"]
self.is_whisper = encoder_info.get("is_whisper", False)
self.is_ecapa = encoder_info.get("is_ecapa", False)
logger.info(f"Loading encoder: {model_name}")
logger.info(f"Encoder class: {encoder_class.__name__}")
# Load pretrained encoder
if self.is_ecapa:
# ECAPA-TDNN uses different loading mechanism
self.encoder = encoder_class(model_name)
else:
self.encoder = encoder_class.from_pretrained(model_name)
hidden_size = self.encoder.config.hidden_size
self.hidden_size = hidden_size
logger.info(f"Hidden size: {hidden_size}")
# Optionally freeze encoder
if freeze_encoder:
for param in self.encoder.parameters():
param.requires_grad = False
logger.info("Encoder weights frozen")
# Pooling and normalization (ECAPA-TDNN already outputs pooled embeddings)
self.attentive_pooling = AttentivePooling(hidden_size)
self.layer_norm = nn.LayerNorm(hidden_size)
self.dropout = nn.Dropout(dropout)
# Gender classification head (2 layers)
self.gender_head = nn.Sequential(
nn.Linear(hidden_size, head_hidden_dim),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(head_hidden_dim, num_genders)
)
# Dialect classification head (3 layers - deeper for harder task)
self.dialect_head = nn.Sequential(
nn.Linear(hidden_size, head_hidden_dim),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(head_hidden_dim, head_hidden_dim // 2),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(head_hidden_dim // 2, num_dialects)
)
def forward(
self,
input_values: torch.Tensor = None,
input_features: torch.Tensor = None,
attention_mask: torch.Tensor = None,
gender_labels: torch.Tensor = None,
dialect_labels: torch.Tensor = None
):
"""
Forward pass - supports both raw audio and pre-extracted features
Args:
input_values: Audio waveform [B, T] (for raw audio mode)
input_features: Pre-extracted features [B, T, H] or [B, 1, H] for ECAPA
attention_mask: Attention mask [B, T]
gender_labels: Gender labels [B] (optional, for training)
dialect_labels: Dialect labels [B] (optional, for training)
Returns:
dict with keys:
- loss: Combined loss (if labels provided)
- gender_logits: Gender predictions [B, num_genders]
- dialect_logits: Dialect predictions [B, num_dialects]
- attention_weights: Attention weights from pooling [B, T] (None for ECAPA)
"""
# Get hidden states from either raw audio or pre-extracted features
if input_features is not None:
# Use pre-extracted features directly
hidden_states = input_features
elif input_values is not None:
# Extract features from encoder
hidden_states = self._encode(input_values, attention_mask)
else:
raise ValueError("Either input_values or input_features must be provided")
# Handle ECAPA-TDNN (outputs [B, 1, H] - already pooled embeddings)
if self.is_ecapa or hidden_states.shape[1] == 1:
# ECAPA-TDNN outputs already pooled embeddings
pooled = hidden_states.squeeze(1) # [B, H]
attn_weights = None
else:
# Create proper attention mask for hidden states (encoder downsamples audio)
# Hidden states have different sequence length than input audio
if attention_mask is not None and hidden_states.shape[1] != attention_mask.shape[1]:
# Create new mask based on hidden states length
batch_size, seq_len, _ = hidden_states.shape
pooled_mask = torch.ones(batch_size, seq_len, device=hidden_states.device)
else:
pooled_mask = attention_mask
# Attentive pooling
pooled, attn_weights = self.attentive_pooling(hidden_states, pooled_mask)
# Normalization and dropout
pooled = self.layer_norm(pooled)
pooled = self.dropout(pooled)
# Classification heads
gender_logits = self.gender_head(pooled)
dialect_logits = self.dialect_head(pooled)
# Compute loss if labels provided
loss = None
if gender_labels is not None and dialect_labels is not None:
loss_fct = nn.CrossEntropyLoss()
gender_loss = loss_fct(gender_logits, gender_labels)
dialect_loss = loss_fct(dialect_logits, dialect_labels)
loss = gender_loss + self.dialect_loss_weight * dialect_loss
return {
'loss': loss,
'gender_logits': gender_logits,
'dialect_logits': dialect_logits,
'attention_weights': attn_weights
}
def _encode(
self,
input_values: torch.Tensor,
attention_mask: torch.Tensor = None
) -> torch.Tensor:
"""
Extract hidden states from encoder
Args:
input_values: Audio waveform [B, T]
attention_mask: Attention mask [B, T]
Returns:
hidden_states: Hidden states [B, T, H] or [B, 1, H] for ECAPA-TDNN
"""
if self.is_ecapa:
# ECAPA-TDNN outputs fixed-size embeddings [B, 1, H]
outputs = self.encoder(input_values, attention_mask)
hidden_states = outputs.last_hidden_state
elif self.is_whisper:
# Whisper uses encoder-decoder, we only use encoder
outputs = self.encoder.encoder(input_values)
hidden_states = outputs.last_hidden_state
else:
# WavLM, HuBERT, Wav2Vec2
outputs = self.encoder(input_values, attention_mask=attention_mask)
hidden_states = outputs.last_hidden_state
return hidden_states
def get_embeddings(
self,
input_values: torch.Tensor,
attention_mask: torch.Tensor = None
) -> torch.Tensor:
"""
Extract speaker embeddings (pooled representations)
Args:
input_values: Audio waveform [B, T]
attention_mask: Attention mask [B, T]
Returns:
embeddings: Speaker embeddings [B, H]
"""
hidden_states = self._encode(input_values, attention_mask)
if self.is_ecapa or hidden_states.shape[1] == 1:
# ECAPA-TDNN already outputs pooled embeddings
pooled = hidden_states.squeeze(1)
else:
pooled, _ = self.attentive_pooling(hidden_states, attention_mask)
pooled = self.layer_norm(pooled)
return pooled
class MultiTaskSpeakerModelFromConfig(MultiTaskSpeakerModel):
"""
Multi-task model initialized from OmegaConf config
Supports multiple encoders: WavLM, HuBERT, Wav2Vec2, Whisper
Use this for inference with raw audio input.
Usage:
config = OmegaConf.load('configs/finetune.yaml')
model = MultiTaskSpeakerModelFromConfig(config)
"""
def __init__(self, config):
model_config = config['model']
super().__init__(
model_name=model_config['name'],
num_genders=model_config.get('num_genders', 2),
num_dialects=model_config.get('num_dialects', 3),
dropout=model_config.get('dropout', 0.1),
head_hidden_dim=model_config.get('head_hidden_dim', 256),
freeze_encoder=model_config.get('freeze_encoder', False),
dialect_loss_weight=config.get('loss', {}).get('dialect_weight', 3.0)
)
logger.info(f"Architecture: {model_config['name']} + Attentive Pooling + LayerNorm")
logger.info(f"Hidden size: {self.hidden_size}")
logger.info(f"Head hidden dim: {model_config.get('head_hidden_dim', 256)}")
logger.info(f"Dropout: {model_config.get('dropout', 0.1)}")
class ClassificationHeadModel(nn.Module):
"""
Lightweight model with only classification heads (no encoder).
Use this for training with pre-extracted features to save memory.
Hidden_size depends on encoder: WavLM-base=768, WavLM-large=1024, etc.
Usage:
model = ClassificationHeadModel(config)
output = model(input_features=features, gender_labels=y_gender, dialect_labels=y_dialect)
"""
def __init__(
self,
hidden_size: int = 768,
num_genders: int = 2,
num_dialects: int = 3,
dropout: float = 0.1,
head_hidden_dim: int = 256,
dialect_loss_weight: float = 3.0
):
super().__init__()
self.hidden_size = hidden_size
self.dialect_loss_weight = dialect_loss_weight
# Pooling and normalization
self.attentive_pooling = AttentivePooling(hidden_size)
self.layer_norm = nn.LayerNorm(hidden_size)
self.dropout = nn.Dropout(dropout)
# Gender classification head (2 layers)
self.gender_head = nn.Sequential(
nn.Linear(hidden_size, head_hidden_dim),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(head_hidden_dim, num_genders)
)
# Dialect classification head (3 layers - deeper for harder task)
self.dialect_head = nn.Sequential(
nn.Linear(hidden_size, head_hidden_dim),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(head_hidden_dim, head_hidden_dim // 2),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(head_hidden_dim // 2, num_dialects)
)
logger.info(f"ClassificationHeadModel initialized (hidden_size={hidden_size})")
def forward(
self,
input_features: torch.Tensor,
attention_mask: torch.Tensor = None,
gender_labels: torch.Tensor = None,
dialect_labels: torch.Tensor = None
):
"""
Forward pass for pre-extracted features
Args:
input_features: Pre-extracted WavLM features [B, T, H]
attention_mask: Attention mask [B, T]
gender_labels: Gender labels [B] (optional, for training)
dialect_labels: Dialect labels [B] (optional, for training)
Returns:
dict with keys:
- loss: Combined loss (if labels provided)
- gender_logits: Gender predictions [B, num_genders]
- dialect_logits: Dialect predictions [B, num_dialects]
- attention_weights: Attention weights from pooling [B, T]
"""
# Attentive pooling
pooled, attn_weights = self.attentive_pooling(input_features, attention_mask)
# Normalization and dropout
pooled = self.layer_norm(pooled)
pooled = self.dropout(pooled)
# Classification heads
gender_logits = self.gender_head(pooled)
dialect_logits = self.dialect_head(pooled)
# Compute loss if labels provided
loss = None
if gender_labels is not None and dialect_labels is not None:
loss_fct = nn.CrossEntropyLoss()
gender_loss = loss_fct(gender_logits, gender_labels)
dialect_loss = loss_fct(dialect_logits, dialect_labels)
loss = gender_loss + self.dialect_loss_weight * dialect_loss
return {
'loss': loss,
'gender_logits': gender_logits,
'dialect_logits': dialect_logits,
'attention_weights': attn_weights
}
class ClassificationHeadModelFromConfig(ClassificationHeadModel):
"""
Lightweight classification model initialized from OmegaConf config.
Use this for training with pre-extracted features.
"""
def __init__(self, config):
model_config = config['model']
super().__init__(
hidden_size=model_config.get('hidden_size', 768), # WavLM base hidden size
num_genders=model_config.get('num_genders', 2),
num_dialects=model_config.get('num_dialects', 3),
dropout=model_config.get('dropout', 0.1),
head_hidden_dim=model_config.get('head_hidden_dim', 256),
dialect_loss_weight=config.get('loss', {}).get('dialect_weight', 3.0)
)
logger.info("Architecture: Attentive Pooling + LayerNorm + Classification Heads")
logger.info(f"Hidden size: {self.hidden_size}")
logger.info(f"Head hidden dim: {model_config.get('head_hidden_dim', 256)}")
logger.info(f"Dropout: {model_config.get('dropout', 0.1)}")
|