Thanh-Lam's picture
Vietnamese Speaker Profiling with wav2vec2-base-vi-vlsp2020
c3418e9
"""
Utility functions for Speaker Profiling
"""
import os
import logging
import random
import numpy as np
import torch
import librosa
from pathlib import Path
from omegaconf import OmegaConf
from typing import Union, Optional, Tuple
def setup_logging(
name: str = "speaker_profiling",
level: int = logging.INFO,
log_file: Optional[str] = None
) -> logging.Logger:
"""
Setup logging configuration
Args:
name: Logger name
level: Logging level
log_file: Optional path to log file
Returns:
Configured logger instance
"""
logger = logging.getLogger(name)
logger.setLevel(level)
if logger.handlers:
logger.handlers.clear()
formatter = logging.Formatter(
fmt="%(asctime)s | %(levelname)s | %(message)s",
datefmt="%Y-%m-%d %H:%M:%S"
)
console_handler = logging.StreamHandler()
console_handler.setLevel(level)
console_handler.setFormatter(formatter)
logger.addHandler(console_handler)
if log_file:
os.makedirs(os.path.dirname(log_file), exist_ok=True)
file_handler = logging.FileHandler(log_file, encoding='utf-8')
file_handler.setLevel(level)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
return logger
def get_logger(name: str = "speaker_profiling") -> logging.Logger:
"""Get existing logger or create new one"""
logger = logging.getLogger(name)
if not logger.handlers:
return setup_logging(name)
return logger
def load_config(config_path: str) -> OmegaConf:
"""
Load configuration from yaml file
Args:
config_path: Path to yaml config file
Returns:
OmegaConf configuration object
"""
if not os.path.exists(config_path):
raise FileNotFoundError(f"Config file not found: {config_path}")
return OmegaConf.load(config_path)
def set_seed(seed: int) -> None:
"""
Set random seed for reproducibility
Args:
seed: Random seed value
"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def load_audio(
audio_path: Union[str, Path],
sampling_rate: int = 16000,
mono: bool = True
) -> Tuple[np.ndarray, int]:
"""
Load audio file
Args:
audio_path: Path to audio file
sampling_rate: Target sampling rate
mono: Whether to convert to mono
Returns:
Tuple of (audio array, sampling rate)
"""
audio, sr = librosa.load(audio_path, sr=sampling_rate, mono=mono)
return audio, sr
def preprocess_audio(
audio: np.ndarray,
sampling_rate: int = 16000,
max_duration: float = 10.0,
trim_db: int = 20,
normalize: bool = True,
center_crop: bool = True
) -> np.ndarray:
"""
Preprocess audio for model input
Args:
audio: Raw audio array
sampling_rate: Audio sampling rate
max_duration: Maximum duration in seconds
trim_db: Threshold for silence trimming
normalize: Whether to normalize audio
center_crop: If True, center crop; else random crop (for training)
Returns:
Preprocessed audio array
"""
max_length = int(sampling_rate * max_duration)
audio, _ = librosa.effects.trim(audio, top_db=trim_db)
if normalize:
audio = audio / (np.max(np.abs(audio)) + 1e-8)
if len(audio) < max_length:
audio = np.pad(audio, (0, max_length - len(audio)))
elif len(audio) > max_length:
if center_crop:
start = (len(audio) - max_length) // 2
else:
start = np.random.randint(0, len(audio) - max_length + 1)
audio = audio[start:start + max_length]
return audio
def load_and_preprocess_audio(
audio_path: Union[str, Path],
sampling_rate: int = 16000,
max_duration: float = 10.0,
trim_db: int = 20,
normalize: bool = True,
center_crop: bool = True
) -> np.ndarray:
"""
Load and preprocess audio file in one step
Args:
audio_path: Path to audio file
sampling_rate: Target sampling rate
max_duration: Maximum duration in seconds
trim_db: Threshold for silence trimming
normalize: Whether to normalize audio
center_crop: If True, center crop; else random crop
Returns:
Preprocessed audio array
"""
audio, _ = load_audio(audio_path, sampling_rate)
return preprocess_audio(
audio,
sampling_rate,
max_duration,
trim_db,
normalize,
center_crop
)
def load_model_checkpoint(
model: torch.nn.Module,
checkpoint_path: str,
device: str = 'cpu'
) -> torch.nn.Module:
"""
Load model from checkpoint
Args:
model: PyTorch model instance
checkpoint_path: Path to checkpoint directory
device: Device to load model on
Returns:
Model with loaded weights
"""
logger = get_logger()
safetensors_path = os.path.join(checkpoint_path, 'model.safetensors')
pytorch_path = os.path.join(checkpoint_path, 'pytorch_model.bin')
if os.path.exists(safetensors_path):
from safetensors.torch import load_file
state_dict = load_file(safetensors_path)
logger.info(f"Loading checkpoint from {safetensors_path}")
elif os.path.exists(pytorch_path):
state_dict = torch.load(pytorch_path, map_location=device)
logger.info(f"Loading checkpoint from {pytorch_path}")
else:
raise FileNotFoundError(
f"No checkpoint found in {checkpoint_path}. "
f"Expected 'model.safetensors' or 'pytorch_model.bin'"
)
model.load_state_dict(state_dict)
return model
def get_device(device_str: str = 'cuda') -> torch.device:
"""
Get torch device, fallback to CPU if CUDA not available
Args:
device_str: Desired device string ('cuda' or 'cpu')
Returns:
torch.device instance
"""
if device_str == 'cuda' and torch.cuda.is_available():
return torch.device('cuda')
return torch.device('cpu')
def count_parameters(model: torch.nn.Module) -> Tuple[int, int]:
"""
Count model parameters
Args:
model: PyTorch model
Returns:
Tuple of (total_params, trainable_params)
"""
total = sum(p.numel() for p in model.parameters())
trainable = sum(p.numel() for p in model.parameters() if p.requires_grad)
return total, trainable
def format_number(num: int) -> str:
"""Format large numbers with commas"""
return f"{num:,}"