Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -48,6 +48,112 @@ def pw_wavy_input(n,dim,n_bkps,sigma):
|
|
| 48 |
input_list = ['piecewiseConstant','piecewiseLinear','piecewiseNormal','piecewiseSinusoidal']
|
| 49 |
generate_signal = st.selectbox(label = "Choose an input signal", options = input_list)
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
|
| 53 |
|
|
|
|
| 48 |
input_list = ['piecewiseConstant','piecewiseLinear','piecewiseNormal','piecewiseSinusoidal']
|
| 49 |
generate_signal = st.selectbox(label = "Choose an input signal", options = input_list)
|
| 50 |
|
| 51 |
+
n,dim,n_bkps,sigma = st.columns(4)
|
| 52 |
+
with n:
|
| 53 |
+
n= st.number_input('No of Samples',min_value=100,step=1)
|
| 54 |
+
with dim:
|
| 55 |
+
dim = st.number_input('No of dimesions',min_value=1,max_value = 5,step=1)
|
| 56 |
+
with n_bkps:
|
| 57 |
+
n_bkps = st.number_input('No of breakpoints',min_value=2,step=1)
|
| 58 |
+
with sigma:
|
| 59 |
+
sigma = st.number_input('Variance',min_value=1,max_value=4,step=1)
|
| 60 |
+
|
| 61 |
+
if generate_signal == 'piecewiseConstant':
|
| 62 |
+
signal,bkps = pw_constant_input(n,dim,n_bkps,sigma)
|
| 63 |
+
elif generate_signal== 'piecewiseLinear':
|
| 64 |
+
signal,bkps = pw_linear_input(n,dim,n_bkps,sigma)
|
| 65 |
+
elif generate_signal == 'piecewiseNormal':
|
| 66 |
+
signal,bkps = pw_normal_input(n,dim,n_bkps,sigma)
|
| 67 |
+
else:
|
| 68 |
+
signal,bkps= pw_wavy_input(n,dim,n_bkps,sigma)
|
| 69 |
+
|
| 70 |
+
fig, axarr = rpt.display(signal,bkps)
|
| 71 |
+
st.pyplot(fig)
|
| 72 |
+
|
| 73 |
+
def dynp_method(signal,bkps,n_bkps):
|
| 74 |
+
# change point detection
|
| 75 |
+
model = "l1" # "l2", "rbf"
|
| 76 |
+
algo = rpt.Dynp(model=model, min_size=3, jump=5).fit(signal)
|
| 77 |
+
my_bkps = algo.predict(n_bkps)
|
| 78 |
+
# show results
|
| 79 |
+
fig,axarr = rpt.show.display(signal, bkps, my_bkps, figsize=(10, 6))
|
| 80 |
+
#plt.show()
|
| 81 |
+
st.pyplot(fig)
|
| 82 |
+
return my_bkps
|
| 83 |
+
|
| 84 |
+
def pelt_method(signal,bkps,n_bkps):
|
| 85 |
+
# change point detection
|
| 86 |
+
model = "l1" # "l2", "rbf"
|
| 87 |
+
algo = rpt.Pelt(model=model, min_size=3, jump=5).fit(signal)
|
| 88 |
+
my_bkps = algo.predict(pen=3)
|
| 89 |
+
|
| 90 |
+
# show results
|
| 91 |
+
fig, ax_arr = rpt.display(signal, bkps, my_bkps, figsize=(10, 6))
|
| 92 |
+
st.pyplot(fig)
|
| 93 |
+
return my_bkps
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def bin_seg_method(signal,bkps,n_bkps):
|
| 97 |
+
# change point detection
|
| 98 |
+
model = "l2" # "l1", "rbf", "linear", "normal", "ar",...
|
| 99 |
+
algo = rpt.Binseg(model=model).fit(signal)
|
| 100 |
+
my_bkps = algo.predict(n_bkps)
|
| 101 |
+
|
| 102 |
+
# show results
|
| 103 |
+
fg,axxarr = rpt.show.display(signal, bkps, my_bkps, figsize=(10, 6))
|
| 104 |
+
st.pyplot(fig)
|
| 105 |
+
return my_bkps
|
| 106 |
+
|
| 107 |
+
def bot_up_seg(signal,bkps,n_bkps):
|
| 108 |
+
# change point detection
|
| 109 |
+
model = "l2" # "l1", "rbf", "linear", "normal", "ar",...
|
| 110 |
+
algo = rpt.Binseg(model=model).fit(signal)
|
| 111 |
+
my_bkps = algo.predict(n_bkps)
|
| 112 |
+
|
| 113 |
+
# show results
|
| 114 |
+
fig,axxar = rpt.show.display(signal, bkps, my_bkps, figsize=(10, 6))
|
| 115 |
+
st.pyplot(fig)
|
| 116 |
+
return my_bkps
|
| 117 |
+
|
| 118 |
+
def win_sli_seg(signal,bkps,n_bkps):
|
| 119 |
+
# change point detection
|
| 120 |
+
model = "l2" # "l1", "rbf", "linear", "normal", "ar"
|
| 121 |
+
algo = rpt.Window(width=40, model=model).fit(signal)
|
| 122 |
+
my_bkps = algo.predict(n_bkps)
|
| 123 |
+
|
| 124 |
+
# show results
|
| 125 |
+
fig,axxar= rpt.show.display(signal, bkps, my_bkps, figsize=(10, 6))
|
| 126 |
+
st.pyplot(fig)
|
| 127 |
+
return my_bkps
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
searchmethod_list = ['Dynamic Programming','Pelt','Binary Segmentation','Bottom-up Segmentation','Window sliding segmentation']
|
| 131 |
+
detection_model = st.selectbox(label = "Choose a Detection Method",options = searchmethod_list)
|
| 132 |
+
|
| 133 |
+
if detection_model== 'Dynamic Programming':
|
| 134 |
+
bkps1 = dynp_method(signal,bkps,n_bkps)
|
| 135 |
+
|
| 136 |
+
elif detection_model=='Pelt':
|
| 137 |
+
bkps1 = pelt_method(signal,bkps,n_bkps)
|
| 138 |
+
elif detection_model=='Binary Segmentation':
|
| 139 |
+
bkps1 = bin_seg_method(signal,bkps,n_bkps)
|
| 140 |
+
elif detection_model=='Bottom-up Segmentation':
|
| 141 |
+
bkps1 = bot_up_seg(signal,bkps,n_bkps)
|
| 142 |
+
else:
|
| 143 |
+
bkps1 = win_sli_seg(signal,bkps,n_bkps)
|
| 144 |
+
|
| 145 |
+
p, r = precision_recall(bkps, bkps1)
|
| 146 |
+
st.header('Precision and Recall')
|
| 147 |
+
st.write(p, r)
|
| 148 |
+
|
| 149 |
+
st.header('Hausdorff metric')
|
| 150 |
+
st.write(hausdorff(bkps, bkps1))
|
| 151 |
+
|
| 152 |
+
st.header('Rand index')
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
st.write(randindex(bkps, bkps1))
|
| 156 |
+
|
| 157 |
|
| 158 |
|
| 159 |
|