Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import tensorflow as tf
|
| 2 |
+
from tensorflow import keras
|
| 3 |
+
import numpy as np
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
import pandas as pd
|
| 6 |
+
from sklearn.model_selection import train_test_split
|
| 7 |
+
from sklearn import preprocessing
|
| 8 |
+
import seaborn as sns
|
| 9 |
+
from sklearn.preprocessing import LabelEncoder
|
| 10 |
+
import pickle
|
| 11 |
+
import streamlit as st
|
| 12 |
+
|
| 13 |
+
st.title('Repair Time Prediction')
|
| 14 |
+
#DLoading the ataset
|
| 15 |
+
#df = pd.read_csv('repair_time_sample_50k_modified2.csv')
|
| 16 |
+
|
| 17 |
+
new_data = df
|
| 18 |
+
#df.drop(['SRU serial number','Date of Manufacture', 'Snag Description'], axis = 1, inplace=True)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
# DATA from user
|
| 22 |
+
def user_report():
|
| 23 |
+
Aircraft_Type = st.sidebar.selectbox('Aircraft Type',("AH-64","UH-60","UH-63","UH-62","UH-61","AH-65"))
|
| 24 |
+
if Aircraft_Type=="AH-64":
|
| 25 |
+
Aircraft_Type=0
|
| 26 |
+
elif Aircraft_Type=="UH-60":
|
| 27 |
+
Aircraft_Type=2
|
| 28 |
+
elif Aircraft_Type=="UH-63":
|
| 29 |
+
Aircraft_Type=5
|
| 30 |
+
elif Aircraft_Type=="UH-62":
|
| 31 |
+
Aircraft_Type=4
|
| 32 |
+
elif Aircraft_Type=="UH-61":
|
| 33 |
+
Aircraft_Type=3
|
| 34 |
+
else:
|
| 35 |
+
Aircraft_Type=1
|
| 36 |
+
manufacturer = st.sidebar.selectbox("Manufacturer",
|
| 37 |
+
("JKL Company", "GHI Company","AGS Company","ABC Company","ABC Company","XYZ Company" ))
|
| 38 |
+
if manufacturer=='JKL Company':
|
| 39 |
+
manufacturer=3
|
| 40 |
+
elif manufacturer=="GHI Company":
|
| 41 |
+
manufacturer=2
|
| 42 |
+
elif manufacturer=="AGS Company":
|
| 43 |
+
manufacturer=1
|
| 44 |
+
elif manufacturer=="ABC Company":
|
| 45 |
+
manufacturer =0
|
| 46 |
+
else:
|
| 47 |
+
manufacturer=4
|
| 48 |
+
component_age = st.sidebar.slider('Component Age (in hours)', 500,2000, 600 )
|
| 49 |
+
Issue_category= st.sidebar.selectbox("Issue Category",
|
| 50 |
+
("Display", "Unservicable","Bootup Problem","Engine Failure","Electrical Fault" ))
|
| 51 |
+
if Issue_category=='Display':
|
| 52 |
+
Issue_category=1
|
| 53 |
+
elif Issue_category=="Unservicable":
|
| 54 |
+
Issue_category=4
|
| 55 |
+
elif Issue_category=="Bootup Problem":
|
| 56 |
+
Issue_category=0
|
| 57 |
+
elif Issue_category=="Engine Failure":
|
| 58 |
+
Issue_category=3
|
| 59 |
+
else:
|
| 60 |
+
Issue_category=2
|
| 61 |
+
Snag Severity = st.sidebar.selectbox("Snag Severity",
|
| 62 |
+
("Low", "Medium","High" ))
|
| 63 |
+
if Snag Severity =='Low':
|
| 64 |
+
Snag Severity=1
|
| 65 |
+
elif Snag Severity=="Medium":
|
| 66 |
+
Snag Severity =2
|
| 67 |
+
else:
|
| 68 |
+
Snag Severity=0
|
| 69 |
+
Customer= st.sidebar.selectbox("Customer",
|
| 70 |
+
("IAF", "ARMY","NAVY" ))
|
| 71 |
+
if Customer =='IAF':
|
| 72 |
+
Customer=1
|
| 73 |
+
elif Customer=="ARMY":
|
| 74 |
+
Customer =0
|
| 75 |
+
else:
|
| 76 |
+
Customer=2
|
| 77 |
+
Technician_Skill_level= st.sidebar.selectbox("Technician Skill level",
|
| 78 |
+
("Expert", "Intermediate","Novice" ))
|
| 79 |
+
if Technician_Skill_level =='Expert':
|
| 80 |
+
Technician_Skill_level=0
|
| 81 |
+
elif Technician_Skill_level=="Intermediate":
|
| 82 |
+
Technician_Skill_level =1
|
| 83 |
+
else:
|
| 84 |
+
Technician_Skill_level=2
|
| 85 |
+
prior_maintainence = st.sidebar.selectbox('Prior Maintainence',("Regular","Irregular"))
|
| 86 |
+
if prior_maintainence =='Regular':
|
| 87 |
+
prior_maintainence=1
|
| 88 |
+
else:
|
| 89 |
+
prior_maintainence=0
|
| 90 |
+
Logistics_Time = st.sidebar.slider('Logistics Time (hr)', 2,21, 5 )
|
| 91 |
+
total_operating_hours = st.sidebar.slider('Total Operating Hours)', 50,2000, 500 )
|
| 92 |
+
operating_temperature = st.sidebar.slider('Operating Temperature', 10,25, 15 )
|
| 93 |
+
previous_number_of_repairs = st.sidebar.number_input('Enter the Previous Number of Repairs Undergone 0 to 3 )',min_value=0,max_value=3,step=1)
|
| 94 |
+
Power_Input_Voltage= st.sidebar.slider('Power Input Voltage (V)',100,133,115)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
user_report_data = {
|
| 98 |
+
'Aircraft Type':Aircraft_Type,
|
| 99 |
+
'Manufacturer':manufacturer,
|
| 100 |
+
'Component_Age':component_age,
|
| 101 |
+
'Issue_category':Issue_category,
|
| 102 |
+
'Snag Severity': Snag Severity,
|
| 103 |
+
'Customer':Customer,
|
| 104 |
+
'Technician Skill level':Technician_Skill_level,
|
| 105 |
+
'Prior Maintenance': prior_maintainence,
|
| 106 |
+
'Logistics Time (hr)':Logistics_Time,
|
| 107 |
+
'total_operating_hours':total_operating_hour,
|
| 108 |
+
'operating_temperature':operating_temperature,
|
| 109 |
+
'previous_number_of_repairs':previous_number_of_repairs, ,
|
| 110 |
+
'Power_Input_Voltage':Power_Input_Voltage
|
| 111 |
+
|
| 112 |
+
}
|
| 113 |
+
report_data = pd.DataFrame(user_report_data, index=[0])
|
| 114 |
+
return report_data
|
| 115 |
+
|
| 116 |
+
#Customer Data
|
| 117 |
+
user_data = user_report()
|
| 118 |
+
st.header("Component Details")
|
| 119 |
+
st.write(user_data)
|
| 120 |
+
|
| 121 |
+
def preprocess_dataset(X):
|
| 122 |
+
x = X.values #returns a numpy array
|
| 123 |
+
min_max_scaler = preprocessing.MinMaxScaler()
|
| 124 |
+
x_scaled = min_max_scaler.fit_transform(x)
|
| 125 |
+
X_df = pd.DataFrame(x_scaled)
|
| 126 |
+
return X_df
|
| 127 |
+
|
| 128 |
+
def label_encoding(data):
|
| 129 |
+
le = LabelEncoder()
|
| 130 |
+
cat = data.select_dtypes(include='O').keys()
|
| 131 |
+
categ = list(cat)
|
| 132 |
+
data[categ] = data[categ].apply(le.fit_transform)
|
| 133 |
+
# X = data.loc[:,data.columns!= "Time required for repair (in hours)"]
|
| 134 |
+
# y = data['Time required for repair (in hours)']
|
| 135 |
+
# return X,y
|
| 136 |
+
return data
|
| 137 |
+
|
| 138 |
+
def prediction(df):
|
| 139 |
+
#X = df.loc[:,df.columns!= "Time required for repair (in hours)"]
|
| 140 |
+
#y = df['Time required for repair (in hours)']
|
| 141 |
+
#X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
|
| 142 |
+
#print(X_train.shape)
|
| 143 |
+
#print(X_test.shape)
|
| 144 |
+
X_test_encoded = label_encoding(df)
|
| 145 |
+
X_test_df = preprocess_dataset(X_test_encoded)
|
| 146 |
+
x_model = pickle.load(open('repair_time_model.pkl','rb'))
|
| 147 |
+
pred = x_model.predict(X_test_df)
|
| 148 |
+
#X_test['Actual_time_to_repair'] = y_test
|
| 149 |
+
#X_test['Predicted_time_to_repair'] = pred
|
| 150 |
+
#X_test.to_csv(r'/content/drive/MyDrive/Colab Notebooks/HAL/repair_time_prediction_results.csv')
|
| 151 |
+
#print(X_test.head())
|
| 152 |
+
return pred
|
| 153 |
+
|
| 154 |
+
y_pred = prediction(user_data)
|
| 155 |
+
|
| 156 |
+
if st.button("Predict"):
|
| 157 |
+
st.subheader(f"Time required to Repairs the Component is {y_pred} in hours")
|