Spaces:
Runtime error
Runtime error
| import numpy as np | |
| import math | |
| import matplotlib.pyplot as plt | |
| import seaborn as sns | |
| plt.style.use('seaborn-white') | |
| import pandas as pd | |
| from matplotlib import animation, rc | |
| import torch.nn.functional as F | |
| import torch | |
| import torch.nn as nn | |
| import torch.optim as optim | |
| plt.rcParams.update({'pdf.fonttype': 'truetype'}) | |
| import pickle | |
| pc2 = pickle.load(open('price.pkl','rb')) | |
| from PIL import Image | |
| import streamlit as st | |
| st.title("Price Optimization") | |
| def to_tensor(x): | |
| return torch.from_numpy(np.array(x).astype(np.float32)) | |
| def prediction(price_max,price_step,policy_net): | |
| price_grid = np.arange(price_step, price_max, price_step) | |
| sample_state = [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., \ | |
| 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.] | |
| Q_s = policy_net(to_tensor(sample_state)) | |
| a_opt = Q_s.max(0)[1].detach() | |
| plt.figure(figsize=(16, 5)) | |
| plt.xlabel("Price action ($)") | |
| plt.ylabel("Q ($)") | |
| plt.bar(price_grid, Q_s.detach().numpy(), color='crimson', width=6, alpha=0.8) | |
| plt.savefig('price.png') | |
| return price_grid[a_opt] | |
| def fun(): | |
| st.header("Optimal Price Action") | |
| st.subheader(str(a)) | |
| return | |
| st.header("Enter the Specification") | |
| max_value = st.number_input('Enter the Maximum Value of Price',min_value=50,value = 500,step=1) | |
| step = st.number_input('Enter the Price step',min_value = 10,value = 10,step=1) | |
| a = prediction(max_value,step,pc2) | |
| if st.button('Predict'): | |
| fun() | |
| image = Image.open('price.png') | |
| st.image(image,caption = 'Price Optimization',width =1000) | |