Update app.py
Browse files
app.py
CHANGED
|
@@ -107,23 +107,23 @@ def preprocess_dataset(X):
|
|
| 107 |
return X_df
|
| 108 |
|
| 109 |
def prediction(df):
|
| 110 |
-
X = df.loc[:,df.columns!= "Rogue LRU/SRU (Target)"]
|
| 111 |
-
y = df["Rogue LRU/SRU (Target)"]
|
| 112 |
-
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
|
| 113 |
-
print(X_train.shape)
|
| 114 |
-
print(X_test.shape)
|
| 115 |
-
X_test_encoded = label_encoder(
|
| 116 |
X_test_df = preprocess_dataset(X_test_encoded)
|
| 117 |
x_model = loaded_model = tf.keras.models.load_model('my_model')
|
| 118 |
y_pred = x_model.predict(X_test_df)
|
| 119 |
-
predicition = []
|
| 120 |
-
for i in list(y_pred):
|
| 121 |
-
|
| 122 |
-
|
| 123 |
else:
|
| 124 |
-
|
| 125 |
-
X_test['Actual_time_to_repair'] = y_test
|
| 126 |
-
X_test['Predicted_time_to_repair'] = predicition
|
| 127 |
# X_test.to_csv(r'/content/drive/MyDrive/Colab Notebooks/HAL/rogue_test_data.csv')
|
| 128 |
-
print(X_test.head())
|
| 129 |
-
prediction(
|
|
|
|
| 107 |
return X_df
|
| 108 |
|
| 109 |
def prediction(df):
|
| 110 |
+
#X = df.loc[:,df.columns!= "Rogue LRU/SRU (Target)"]
|
| 111 |
+
#y = df["Rogue LRU/SRU (Target)"]
|
| 112 |
+
#X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
|
| 113 |
+
#print(X_train.shape)
|
| 114 |
+
#print(X_test.shape)
|
| 115 |
+
X_test_encoded = label_encoder(df)
|
| 116 |
X_test_df = preprocess_dataset(X_test_encoded)
|
| 117 |
x_model = loaded_model = tf.keras.models.load_model('my_model')
|
| 118 |
y_pred = x_model.predict(X_test_df)
|
| 119 |
+
#predicition = []
|
| 120 |
+
#for i in list(y_pred):
|
| 121 |
+
if y_pred ==0:
|
| 122 |
+
st.write('Rouge Component is Good')
|
| 123 |
else:
|
| 124 |
+
st.write('Rouge Component is not good')
|
| 125 |
+
#X_test['Actual_time_to_repair'] = y_test
|
| 126 |
+
#X_test['Predicted_time_to_repair'] = predicition
|
| 127 |
# X_test.to_csv(r'/content/drive/MyDrive/Colab Notebooks/HAL/rogue_test_data.csv')
|
| 128 |
+
#print(X_test.head())
|
| 129 |
+
prediction(user_data)
|