Thiresh commited on
Commit
c15aac8
·
verified ·
1 Parent(s): 28a7622

Upload folder using huggingface_hub

Browse files
Files changed (2) hide show
  1. app.py +59 -0
  2. requirements.txt +3 -0
app.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import requests
4
+
5
+ # Set the title of the Streamlit app
6
+ st.title("Airbnb Rental Price Prediction")
7
+
8
+ # Section for online prediction
9
+ st.subheader("Online Prediction")
10
+
11
+ # Collect user input for property features
12
+ room_type = st.selectbox("Room Type", ["Entire home/apt", "Private room", "Shared room"])
13
+ accommodates = st.number_input("Accommodates (Number of guests)", min_value=1, value=2)
14
+ bathrooms = st.number_input("Bathrooms", min_value=1, step=1, value=2)
15
+ cancellation_policy = st.selectbox("Cancellation Policy (kind of cancellation policy)", ["strict", "flexible", "moderate"])
16
+ cleaning_fee = st.selectbox("Cleaning Fee Charged?", ["True", "False"])
17
+ instant_bookable = st.selectbox("Instantly Bookable?", ["False", "True"])
18
+ review_scores_rating = st.number_input("Review Score Rating", min_value=0.0, max_value=100.0, step=1.0, value=90.0)
19
+ bedrooms = st.number_input("Bedrooms", min_value=0, step=1, value=1)
20
+ beds = st.number_input("Beds", min_value=0, step=1, value=1)
21
+
22
+ # Convert user input into a DataFrame
23
+ input_data = pd.DataFrame([{
24
+ 'room_type': room_type,
25
+ 'accommodates': accommodates,
26
+ 'bathrooms': bathrooms,
27
+ 'cancellation_policy': cancellation_policy,
28
+ 'cleaning_fee': cleaning_fee,
29
+ 'instant_bookable': 'f' if instant_bookable=="False" else "t", # Convert to 't' or 'f'
30
+ 'review_scores_rating': review_scores_rating,
31
+ 'bedrooms': bedrooms,
32
+ 'beds': beds
33
+ }])
34
+
35
+ # Make prediction when the "Predict" button is clicked
36
+ if st.button("Predict"):
37
+ response = requests.post("https://Thiresh-RentalPricePredictionBackend.hf.space/v1/rental", json=input_data.to_dict(orient='records')[0]) # Send data to Flask API
38
+ if response.status_code == 200:
39
+ prediction = response.json()['Predicted Price (in dollars)']
40
+ st.success(f"Predicted Rental Price (in dollars): {prediction}")
41
+ else:
42
+ st.error("Error making prediction.")
43
+
44
+ # Section for batch prediction
45
+ st.subheader("Batch Prediction")
46
+
47
+ # Allow users to upload a CSV file for batch prediction
48
+ uploaded_file = st.file_uploader("Upload CSV file for batch prediction", type=["csv"])
49
+
50
+ # Make batch prediction when the "Predict Batch" button is clicked
51
+ if uploaded_file is not None:
52
+ if st.button("Predict Batch"):
53
+ response = requests.post("https://Thiresh-RentalPricePredictionBackend.hf.space/v1/rentalbatch", files={"file": uploaded_file}) # Send file to Flask API
54
+ if response.status_code == 200:
55
+ predictions = response.json()
56
+ st.success("Batch predictions completed!")
57
+ st.write(predictions) # Display the predictions
58
+ else:
59
+ st.error("Error making batch prediction.")
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ pandas==2.2.2
2
+ requests==2.28.1
3
+ streamlit==1.43.2