Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files- app.py +59 -0
- requirements.txt +3 -0
app.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import requests
|
| 4 |
+
|
| 5 |
+
# Set the title of the Streamlit app
|
| 6 |
+
st.title("Airbnb Rental Price Prediction")
|
| 7 |
+
|
| 8 |
+
# Section for online prediction
|
| 9 |
+
st.subheader("Online Prediction")
|
| 10 |
+
|
| 11 |
+
# Collect user input for property features
|
| 12 |
+
room_type = st.selectbox("Room Type", ["Entire home/apt", "Private room", "Shared room"])
|
| 13 |
+
accommodates = st.number_input("Accommodates (Number of guests)", min_value=1, value=2)
|
| 14 |
+
bathrooms = st.number_input("Bathrooms", min_value=1, step=1, value=2)
|
| 15 |
+
cancellation_policy = st.selectbox("Cancellation Policy (kind of cancellation policy)", ["strict", "flexible", "moderate"])
|
| 16 |
+
cleaning_fee = st.selectbox("Cleaning Fee Charged?", ["True", "False"])
|
| 17 |
+
instant_bookable = st.selectbox("Instantly Bookable?", ["False", "True"])
|
| 18 |
+
review_scores_rating = st.number_input("Review Score Rating", min_value=0.0, max_value=100.0, step=1.0, value=90.0)
|
| 19 |
+
bedrooms = st.number_input("Bedrooms", min_value=0, step=1, value=1)
|
| 20 |
+
beds = st.number_input("Beds", min_value=0, step=1, value=1)
|
| 21 |
+
|
| 22 |
+
# Convert user input into a DataFrame
|
| 23 |
+
input_data = pd.DataFrame([{
|
| 24 |
+
'room_type': room_type,
|
| 25 |
+
'accommodates': accommodates,
|
| 26 |
+
'bathrooms': bathrooms,
|
| 27 |
+
'cancellation_policy': cancellation_policy,
|
| 28 |
+
'cleaning_fee': cleaning_fee,
|
| 29 |
+
'instant_bookable': 'f' if instant_bookable=="False" else "t", # Convert to 't' or 'f'
|
| 30 |
+
'review_scores_rating': review_scores_rating,
|
| 31 |
+
'bedrooms': bedrooms,
|
| 32 |
+
'beds': beds
|
| 33 |
+
}])
|
| 34 |
+
|
| 35 |
+
# Make prediction when the "Predict" button is clicked
|
| 36 |
+
if st.button("Predict"):
|
| 37 |
+
response = requests.post("https://Thiresh-RentalPricePredictionBackend.hf.space/v1/rental", json=input_data.to_dict(orient='records')[0]) # Send data to Flask API
|
| 38 |
+
if response.status_code == 200:
|
| 39 |
+
prediction = response.json()['Predicted Price (in dollars)']
|
| 40 |
+
st.success(f"Predicted Rental Price (in dollars): {prediction}")
|
| 41 |
+
else:
|
| 42 |
+
st.error("Error making prediction.")
|
| 43 |
+
|
| 44 |
+
# Section for batch prediction
|
| 45 |
+
st.subheader("Batch Prediction")
|
| 46 |
+
|
| 47 |
+
# Allow users to upload a CSV file for batch prediction
|
| 48 |
+
uploaded_file = st.file_uploader("Upload CSV file for batch prediction", type=["csv"])
|
| 49 |
+
|
| 50 |
+
# Make batch prediction when the "Predict Batch" button is clicked
|
| 51 |
+
if uploaded_file is not None:
|
| 52 |
+
if st.button("Predict Batch"):
|
| 53 |
+
response = requests.post("https://Thiresh-RentalPricePredictionBackend.hf.space/v1/rentalbatch", files={"file": uploaded_file}) # Send file to Flask API
|
| 54 |
+
if response.status_code == 200:
|
| 55 |
+
predictions = response.json()
|
| 56 |
+
st.success("Batch predictions completed!")
|
| 57 |
+
st.write(predictions) # Display the predictions
|
| 58 |
+
else:
|
| 59 |
+
st.error("Error making batch prediction.")
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
pandas==2.2.2
|
| 2 |
+
requests==2.28.1
|
| 3 |
+
streamlit==1.43.2
|