import streamlit as st import pandas as pd import requests # Set the title of the Streamlit app st.title("Airbnb Rental Price Prediction") # Section for online prediction st.subheader("Online Prediction") # Collect user input for property features room_type = st.selectbox("Room Type", ["Entire home/apt", "Private room", "Shared room"]) accommodates = st.number_input("Accommodates (Number of guests)", min_value=1, value=2) bathrooms = st.number_input("Bathrooms", min_value=1, step=1, value=2) cancellation_policy = st.selectbox("Cancellation Policy (kind of cancellation policy)", ["strict", "flexible", "moderate"]) cleaning_fee = st.selectbox("Cleaning Fee Charged?", ["True", "False"]) instant_bookable = st.selectbox("Instantly Bookable?", ["False", "True"]) review_scores_rating = st.number_input("Review Score Rating", min_value=0.0, max_value=100.0, step=1.0, value=90.0) bedrooms = st.number_input("Bedrooms", min_value=0, step=1, value=1) beds = st.number_input("Beds", min_value=0, step=1, value=1) # Convert user input into a DataFrame input_data = pd.DataFrame([{ 'room_type': room_type, 'accommodates': accommodates, 'bathrooms': bathrooms, 'cancellation_policy': cancellation_policy, 'cleaning_fee': cleaning_fee, 'instant_bookable': 'f' if instant_bookable=="False" else "t", # Convert to 't' or 'f' 'review_scores_rating': review_scores_rating, 'bedrooms': bedrooms, 'beds': beds }]) # Make prediction when the "Predict" button is clicked if st.button("Predict"): response = requests.post("https://Thiresh-RentalPricePredictionBackend.hf.space/v1/rental", json=input_data.to_dict(orient='records')[0]) # Send data to Flask API if response.status_code == 200: prediction = response.json()['Predicted Price (in dollars)'] st.success(f"Predicted Rental Price (in dollars): {prediction}") else: st.error("Error making prediction.") # Section for batch prediction st.subheader("Batch Prediction") # Allow users to upload a CSV file for batch prediction uploaded_file = st.file_uploader("Upload CSV file for batch prediction", type=["csv"]) # Make batch prediction when the "Predict Batch" button is clicked if uploaded_file is not None: if st.button("Predict Batch"): response = requests.post("https://Thiresh-RentalPricePredictionBackend.hf.space/v1/rentalbatch", files={"file": uploaded_file}) # Send file to Flask API if response.status_code == 200: predictions = response.json() st.success("Batch predictions completed!") st.write(predictions) # Display the predictions else: st.error("Error making batch prediction.")