import fetch from 'node-fetch'; import { SECRET_KEYS, readSecret } from '../endpoints/secrets.js'; import { OPENROUTER_HEADERS } from '../constants.js'; const SOURCES = { 'togetherai': { secretKey: SECRET_KEYS.TOGETHERAI, url: 'https://api.together.xyz/v1', model: 'togethercomputer/m2-bert-80M-32k-retrieval', headers: {}, }, 'mistral': { secretKey: SECRET_KEYS.MISTRALAI, url: 'https://api.mistral.ai/v1', model: 'mistral-embed', headers: {}, }, 'openai': { secretKey: SECRET_KEYS.OPENAI, url: 'https://api.openai.com/v1', model: 'text-embedding-ada-002', headers: {}, }, 'electronhub': { secretKey: SECRET_KEYS.ELECTRONHUB, url: 'https://api.electronhub.ai/v1', model: 'text-embedding-3-small', headers: {}, }, 'openrouter': { secretKey: SECRET_KEYS.OPENROUTER, url: 'https://openrouter.ai/api/v1', model: 'openai/text-embedding-3-large', headers: { ...OPENROUTER_HEADERS }, }, }; /** * Gets the vector for the given text batch from an OpenAI compatible endpoint. * @param {string[]} texts - The array of texts to get the vector for * @param {string} source - The source of the vector * @param {import('../users.js').UserDirectoryList} directories - The directories object for the user * @param {string} model - The model to use for the embedding * @returns {Promise} - The array of vectors for the texts */ export async function getOpenAIBatchVector(texts, source, directories, model = '') { const config = SOURCES[source]; if (!config) { console.error('Unknown source', source); throw new Error('Unknown source'); } const key = readSecret(directories, config.secretKey); if (!key) { console.warn('No API key found'); throw new Error('No API key found'); } const url = config.url; const response = await fetch(`${url}/embeddings`, { method: 'POST', headers: { 'Content-Type': 'application/json', 'Authorization': `Bearer ${key}`, ...config.headers, }, body: JSON.stringify({ input: texts, model: model || config.model, }), }); if (!response.ok) { const text = await response.text(); console.warn('API request failed', response.statusText, text); throw new Error('API request failed'); } /** @type {any} */ const data = await response.json(); if (!Array.isArray(data?.data)) { console.warn('API response was not an array'); throw new Error('API response was not an array'); } // Sort data by x.index to ensure the order is correct data.data.sort((a, b) => a.index - b.index); const vectors = data.data.map(x => x.embedding); return vectors; } /** * Gets the vector for the given text from an OpenAI compatible endpoint. * @param {string} text - The text to get the vector for * @param {string} source - The source of the vector * @param {import('../users.js').UserDirectoryList} directories - The directories object for the user * @param {string} model - The model to use for the embedding * @returns {Promise} - The vector for the text */ export async function getOpenAIVector(text, source, directories, model = '') { const vectors = await getOpenAIBatchVector([text], source, directories, model); return vectors[0]; }