Spaces:
Paused
Paused
| # coding=utf-8 | |
| # Copyright 2023 The Bigcode team and HuggingFace Inc. team. | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """PyTorch GPTBigCode model.""" | |
| import math | |
| from typing import List, Optional, Tuple, Union | |
| import torch | |
| import torch.nn.functional as F | |
| import torch.utils.checkpoint | |
| from torch import nn | |
| from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
| from transformers.activations import ACT2FN | |
| from transformers.modeling_attn_mask_utils import AttentionMaskConverter | |
| from transformers.modeling_outputs import ( | |
| BaseModelOutputWithPastAndCrossAttentions, | |
| CausalLMOutputWithCrossAttentions, | |
| SequenceClassifierOutputWithPast, | |
| TokenClassifierOutput, | |
| ) | |
| from transformers.modeling_utils import PreTrainedModel | |
| from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_2 | |
| from transformers.utils import ( | |
| add_code_sample_docstrings, | |
| add_start_docstrings, | |
| add_start_docstrings_to_model_forward, | |
| is_flash_attn_2_available, | |
| is_flash_attn_greater_or_equal_2_10, | |
| logging, | |
| ) | |
| from starvector.model.gpt_bigcode.configuration_gpt_bigcode import GPTBigCodeConfig | |
| if is_flash_attn_2_available(): | |
| from flash_attn import flash_attn_func, flash_attn_varlen_func | |
| from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa | |
| logger = logging.get_logger(__name__) | |
| _CHECKPOINT_FOR_DOC = "bigcode/gpt_bigcode-santacoder" | |
| _CONFIG_FOR_DOC = "GPTBigCodeConfig" | |
| # Fused kernels | |
| # Use separate functions for each case because conditionals prevent kernel fusion. | |
| # TODO: Could have better fused kernels depending on scaling, dropout and head mask. | |
| # Is it doable without writing 32 functions? | |
| def upcast_masked_softmax( | |
| x: torch.Tensor, mask: torch.Tensor, mask_value: torch.Tensor, scale: float, softmax_dtype: torch.dtype | |
| ): | |
| input_dtype = x.dtype | |
| x = x.to(softmax_dtype) * scale | |
| x = torch.where(mask, x, mask_value) | |
| x = torch.nn.functional.softmax(x, dim=-1).to(input_dtype) | |
| return x | |
| def upcast_softmax(x: torch.Tensor, scale: float, softmax_dtype: torch.dtype): | |
| input_dtype = x.dtype | |
| x = x.to(softmax_dtype) * scale | |
| x = torch.nn.functional.softmax(x, dim=-1).to(input_dtype) | |
| return x | |
| def masked_softmax(x: torch.Tensor, mask: torch.Tensor, mask_value: torch.Tensor): | |
| x = torch.where(mask, x, mask_value) | |
| x = torch.nn.functional.softmax(x, dim=-1) | |
| return x | |
| # Copied from transformers.models.llama.modeling_llama._get_unpad_data | |
| def _get_unpad_data(attention_mask): | |
| seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) | |
| indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() | |
| max_seqlen_in_batch = seqlens_in_batch.max().item() | |
| cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) | |
| return ( | |
| indices, | |
| cu_seqlens, | |
| max_seqlen_in_batch, | |
| ) | |
| class GPTBigCodeAttention(nn.Module): | |
| def __init__(self, config, is_cross_attention=False, layer_idx=None): | |
| super().__init__() | |
| self.config = config | |
| self.mask_value = None | |
| self.multi_query = config.multi_query | |
| self.embed_dim = config.hidden_size | |
| self.num_heads = config.num_attention_heads | |
| self.head_dim = self.embed_dim // self.num_heads | |
| self.kv_heads = 1 if self.multi_query else self.num_heads | |
| self.kv_dim = self.kv_heads * self.head_dim | |
| self.split_size = self.embed_dim | |
| self.is_causal = True | |
| if self.head_dim * self.num_heads != self.embed_dim: | |
| raise ValueError( | |
| f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" | |
| f" {self.num_heads})." | |
| ) | |
| self.scale_attn_weights = config.scale_attn_weights | |
| self.is_cross_attention = is_cross_attention | |
| self.layer_idx = layer_idx | |
| self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32 | |
| self.scale_attention_softmax_in_fp32 = ( | |
| config.scale_attention_softmax_in_fp32 and config.attention_softmax_in_fp32 | |
| ) | |
| self.attn_pdrop = config.attn_pdrop | |
| if self.is_cross_attention: | |
| if self.multi_query: | |
| raise NotImplementedError("Multi-Query Attention not supported for cross_attention") | |
| self.c_attn = nn.Linear(self.embed_dim, 2 * self.embed_dim) | |
| self.q_attn = nn.Linear(self.embed_dim, self.embed_dim) | |
| else: | |
| self.c_attn = nn.Linear(self.embed_dim, self.embed_dim + 2 * self.kv_dim) | |
| self.c_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
| self.attn_dropout = nn.Dropout(config.attn_pdrop) | |
| self.resid_dropout = nn.Dropout(config.resid_pdrop) | |
| def _get_mask_value(self, device, dtype): | |
| # torch.where expects a tensor. We use a cache to avoid recreating it every time. | |
| if self.mask_value is None or self.mask_value.dtype != dtype or self.mask_value.device != device: | |
| self.mask_value = torch.full([], torch.finfo(dtype).min, dtype=dtype, device=device) | |
| return self.mask_value | |
| def _attn(self, query, key, value, attention_mask=None, head_mask=None): | |
| dtype = query.dtype | |
| softmax_dtype = torch.float32 if self.attention_softmax_in_fp32 else dtype | |
| upcast = dtype != softmax_dtype | |
| unscale = self.layer_idx + 1 if self.scale_attention_softmax_in_fp32 and upcast else 1 | |
| scale_factor = unscale**-1 | |
| if self.scale_attn_weights: | |
| scale_factor /= self.head_dim**0.5 | |
| # MQA models: (batch_size, query_length, num_heads * head_dim) | |
| # MHA models: (batch_size, num_heads, query_length, head_dim) | |
| query_shape = query.shape | |
| batch_size = query_shape[0] | |
| key_length = key.size(-1) | |
| if self.multi_query: | |
| # (batch_size, query_length, num_heads, head_dim) x (batch_size, head_dim, key_length) | |
| # -> (batch_size, query_length, num_heads, key_length) | |
| query_length = query_shape[1] | |
| attn_shape = (batch_size, query_length, self.num_heads, key_length) | |
| attn_view = (batch_size, query_length * self.num_heads, key_length) | |
| # No copy needed for MQA 2, or when layer_past is provided. | |
| query = query.reshape(batch_size, query_length * self.num_heads, self.head_dim) | |
| else: | |
| # (batch_size, num_heads, query_length, head_dim) x (batch_size, num_heads, head_dim, key_length) | |
| # -> (batch_size, num_heads, query_length, key_length) | |
| query_length = query_shape[2] | |
| attn_shape = (batch_size, self.num_heads, query_length, key_length) | |
| attn_view = (batch_size * self.num_heads, query_length, key_length) | |
| # Always copies | |
| query = query.reshape(batch_size * self.num_heads, query_length, self.head_dim) | |
| # No copy when layer_past is provided. | |
| key = key.reshape(batch_size * self.num_heads, self.head_dim, key_length) | |
| attn_weights = torch.empty(attn_view, device=query.device, dtype=query.dtype) | |
| if query.device.type == "cpu": | |
| # This is needed because of a bug in pytorch https://github.com/pytorch/pytorch/issues/80588. | |
| # The bug was fixed in https://github.com/pytorch/pytorch/pull/96086, | |
| # but the fix has not been released as of pytorch version 2.0.0. | |
| attn_weights = torch.zeros_like(attn_weights) | |
| beta = 1 | |
| else: | |
| beta = 0 | |
| attn_weights = torch.baddbmm(attn_weights, query, key, beta=beta, alpha=scale_factor).view(attn_shape) | |
| if upcast: | |
| # Use a fused kernel to prevent a large overhead from casting and scaling. | |
| # Sub-optimal when the key length is not a multiple of 8. | |
| if attention_mask is None: | |
| attn_weights = upcast_softmax(attn_weights, unscale, softmax_dtype) | |
| else: | |
| mask_value = self._get_mask_value(attn_weights.device, softmax_dtype) | |
| attn_weights = upcast_masked_softmax(attn_weights, attention_mask, mask_value, unscale, softmax_dtype) | |
| else: | |
| if attention_mask is not None: | |
| mask_value = self._get_mask_value(attn_weights.device, softmax_dtype) | |
| # The fused kernel is very slow when the key length is not a multiple of 8, so we skip fusion. | |
| attn_weights = torch.where(attention_mask, attn_weights, mask_value) | |
| attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1) | |
| attn_weights = self.attn_dropout(attn_weights) | |
| # Mask heads if we want to | |
| if head_mask is not None: | |
| if self.multi_query: | |
| head_mask = head_mask.transpose(1, 2) | |
| attn_weights = attn_weights * head_mask | |
| if self.multi_query: | |
| attn_output = torch.bmm(attn_weights.view(attn_view), value).view(query_shape) | |
| else: | |
| attn_output = torch.matmul(attn_weights, value) | |
| return attn_output, attn_weights | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| layer_past: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| encoder_hidden_states: Optional[torch.Tensor] = None, | |
| encoder_attention_mask: Optional[torch.Tensor] = None, | |
| use_cache: Optional[bool] = False, | |
| output_attentions: Optional[bool] = False, | |
| ) -> Union[ | |
| Tuple[torch.Tensor, Optional[torch.Tensor]], | |
| Tuple[torch.Tensor, Optional[torch.Tensor], Tuple[torch.Tensor, ...]], | |
| ]: | |
| if encoder_hidden_states is not None: | |
| if not hasattr(self, "q_attn") or not self.is_cross_attention: | |
| raise ValueError( | |
| "If class is used as cross attention, the weights `q_attn` have to be defined. " | |
| "Please make sure to instantiate class with `GPTBigCodeAttention(..., is_cross_attention=True)`." | |
| ) | |
| query = self.q_attn(hidden_states) | |
| key_value = self.c_attn(encoder_hidden_states) | |
| attention_mask = encoder_attention_mask | |
| elif self.multi_query: | |
| query, key_value = self.c_attn(hidden_states).split((self.embed_dim, 2 * self.kv_dim), dim=2) | |
| else: | |
| # Note: We split as (self.num_heads, 3, self.head_dim) instead of (3, self.num_heads, self.head_dim), | |
| # i.e., the memory layout is not the same as GPT2. | |
| # This makes the concatenation with past_key_value more efficient. | |
| query, key_value = ( | |
| self.c_attn(hidden_states) | |
| .view(*hidden_states.shape[:2], self.num_heads, 3 * self.head_dim) | |
| .transpose(1, 2) | |
| .split((self.head_dim, 2 * self.head_dim), dim=3) | |
| ) | |
| if layer_past is not None: | |
| key_value = torch.cat((layer_past, key_value), dim=-2) | |
| present = key_value if use_cache else None | |
| key, value = key_value.split((self.head_dim, self.head_dim), dim=-1) | |
| attn_output, attn_weights = self._attn(query, key.transpose(-1, -2), value, attention_mask, head_mask) | |
| if not self.multi_query: | |
| attn_output = attn_output.transpose(1, 2).reshape(hidden_states.shape) | |
| attn_output = self.c_proj(attn_output) | |
| attn_output = self.resid_dropout(attn_output) | |
| outputs = (attn_output, present) | |
| if output_attentions: | |
| if self.multi_query: | |
| # Transpose to return weights in the usual format (batch_size, num_heads, query_length, key_length) | |
| attn_weights = attn_weights.transpose(1, 2) | |
| outputs += (attn_weights,) | |
| return outputs # a, present, (attentions) | |
| class GPTBigCodeFlashAttention2(GPTBigCodeAttention): | |
| """ | |
| GPTBigCode flash attention module. This module inherits from `GPTBigCodeAttention` as the weights of the module | |
| stays untouched. The only required change would be on the forward pass where it needs to correctly call the public | |
| API of flash attention and deal with padding tokens in case the input contains any of them. | |
| """ | |
| # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ | |
| def __init__(self, *args, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. | |
| # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. | |
| # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). | |
| self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| layer_past: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| encoder_hidden_states: Optional[torch.Tensor] = None, | |
| encoder_attention_mask: Optional[torch.Tensor] = None, | |
| use_cache: Optional[bool] = False, | |
| output_attentions: Optional[bool] = False, | |
| ) -> Union[ | |
| Tuple[torch.Tensor, Optional[torch.Tensor]], | |
| Tuple[torch.Tensor, Optional[torch.Tensor], Tuple[torch.Tensor, ...]], | |
| ]: | |
| if encoder_hidden_states is not None: | |
| if not hasattr(self, "q_attn") or not self.is_cross_attention: | |
| raise ValueError( | |
| "If class is used as cross attention, the weights `q_attn` have to be defined. " | |
| "Please make sure to instantiate class with `GPTBigCodeAttention(..., is_cross_attention=True)`." | |
| ) | |
| query = self.q_attn(hidden_states) | |
| key_value = self.c_attn(encoder_hidden_states) | |
| attention_mask = encoder_attention_mask | |
| elif self.multi_query: | |
| query, key_value = self.c_attn(hidden_states).split((self.embed_dim, 2 * self.kv_dim), dim=2) | |
| else: | |
| # Note: We split as (self.num_heads, 3, self.head_dim) instead of (3, self.num_heads, self.head_dim), | |
| # i.e., the memory layout is not the same as GPT2. | |
| # This makes the concatenation with past_key_value more efficient. | |
| query, key_value = ( | |
| self.c_attn(hidden_states) | |
| .view(*hidden_states.shape[:2], self.num_heads, 3 * self.head_dim) | |
| .transpose(1, 2) | |
| .split((self.head_dim, 2 * self.head_dim), dim=3) | |
| ) | |
| if layer_past is not None: | |
| key_value = torch.cat((layer_past, key_value), dim=-2) | |
| present = key_value if use_cache else None | |
| key, value = key_value.split((self.head_dim, self.head_dim), dim=-1) | |
| # Flash attention requires the input to have the shape | |
| # batch_size x seq_length x head_dim x hidden_dim | |
| if self.multi_query: | |
| batch_size, query_length, _ = query.shape | |
| query = query.reshape(batch_size, query_length, self.num_heads, self.head_dim) | |
| key = key.unsqueeze(2) | |
| value = value.unsqueeze(2) | |
| else: | |
| query_length = query.shape[2] | |
| batch_size, _, tgt, _ = key.shape | |
| query = query.transpose(1, 2).reshape(batch_size, query_length, self.num_heads, self.head_dim) | |
| key = key.transpose(1, 2).reshape(batch_size, tgt, self.num_heads, self.head_dim) | |
| value = value.transpose(1, 2).reshape(batch_size, tgt, self.num_heads, self.head_dim) | |
| attn_dropout = self.attn_pdrop if self.training else 0.0 | |
| # In PEFT, usually we cast the layer norms in float32 for training stability reasons | |
| # therefore the input hidden states gets silently casted in float32. Hence, we need | |
| # cast them back in float16 just to be sure everything works as expected. | |
| input_dtype = query.dtype | |
| if input_dtype == torch.float32: | |
| if torch.is_autocast_enabled(): | |
| target_dtype = torch.get_autocast_gpu_dtype() | |
| # Handle the case where the model is quantized | |
| elif hasattr(self.config, "_pre_quantization_dtype"): | |
| target_dtype = self.config._pre_quantization_dtype | |
| else: | |
| target_dtype = self.c_attn.weight.dtype | |
| logger.warning_once( | |
| f"The input hidden states seems to be silently casted in float32, this might be related to" | |
| f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | |
| f" {target_dtype}." | |
| ) | |
| query = query.to(target_dtype) | |
| key = key.to(target_dtype) | |
| value = value.to(target_dtype) | |
| attn_output = self._flash_attention_forward( | |
| query, key, value, attention_mask, query_length, dropout=attn_dropout | |
| ) | |
| attn_weights_reshaped = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim) | |
| attn_output = self.c_proj(attn_weights_reshaped) | |
| attn_output = self.resid_dropout(attn_output) | |
| outputs = (attn_output, present) | |
| if output_attentions: | |
| if self.multi_query: | |
| # Transpose to return weights in the usual format (batch_size, num_heads, query_length, key_length) | |
| attn_weights_reshaped = attn_weights_reshaped.transpose(1, 2) | |
| else: | |
| attn_weights_reshaped = None | |
| outputs += (attn_weights_reshaped,) | |
| return outputs # a, present, (attentions) | |
| # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward | |
| def _flash_attention_forward( | |
| self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None | |
| ): | |
| """ | |
| Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token | |
| first unpad the input, then computes the attention scores and pad the final attention scores. | |
| Args: | |
| query_states (`torch.Tensor`): | |
| Input query states to be passed to Flash Attention API | |
| key_states (`torch.Tensor`): | |
| Input key states to be passed to Flash Attention API | |
| value_states (`torch.Tensor`): | |
| Input value states to be passed to Flash Attention API | |
| attention_mask (`torch.Tensor`): | |
| The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the | |
| position of padding tokens and 1 for the position of non-padding tokens. | |
| dropout (`float`): | |
| Attention dropout | |
| softmax_scale (`float`, *optional*): | |
| The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) | |
| """ | |
| if not self._flash_attn_uses_top_left_mask: | |
| causal = self.is_causal | |
| else: | |
| # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__. | |
| causal = self.is_causal and query_length != 1 | |
| # Contains at least one padding token in the sequence | |
| if attention_mask is not None: | |
| batch_size = query_states.shape[0] | |
| query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( | |
| query_states, key_states, value_states, attention_mask, query_length | |
| ) | |
| cu_seqlens_q, cu_seqlens_k = cu_seq_lens | |
| max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens | |
| attn_output_unpad = flash_attn_varlen_func( | |
| query_states, | |
| key_states, | |
| value_states, | |
| cu_seqlens_q=cu_seqlens_q, | |
| cu_seqlens_k=cu_seqlens_k, | |
| max_seqlen_q=max_seqlen_in_batch_q, | |
| max_seqlen_k=max_seqlen_in_batch_k, | |
| dropout_p=dropout, | |
| softmax_scale=softmax_scale, | |
| causal=causal, | |
| ) | |
| attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) | |
| else: | |
| attn_output = flash_attn_func( | |
| query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal | |
| ) | |
| return attn_output | |
| # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input | |
| def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): | |
| indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) | |
| batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape | |
| key_layer = index_first_axis( | |
| key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k | |
| ) | |
| value_layer = index_first_axis( | |
| value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k | |
| ) | |
| if query_length == kv_seq_len: | |
| query_layer = index_first_axis( | |
| query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k | |
| ) | |
| cu_seqlens_q = cu_seqlens_k | |
| max_seqlen_in_batch_q = max_seqlen_in_batch_k | |
| indices_q = indices_k | |
| elif query_length == 1: | |
| max_seqlen_in_batch_q = 1 | |
| cu_seqlens_q = torch.arange( | |
| batch_size + 1, dtype=torch.int32, device=query_layer.device | |
| ) # There is a memcpy here, that is very bad. | |
| indices_q = cu_seqlens_q[:-1] | |
| query_layer = query_layer.squeeze(1) | |
| else: | |
| # The -q_len: slice assumes left padding. | |
| attention_mask = attention_mask[:, -query_length:] | |
| query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) | |
| return ( | |
| query_layer, | |
| key_layer, | |
| value_layer, | |
| indices_q, | |
| (cu_seqlens_q, cu_seqlens_k), | |
| (max_seqlen_in_batch_q, max_seqlen_in_batch_k), | |
| ) | |
| class GPTBigCodeSdpaAttention(GPTBigCodeAttention): | |
| def _attn(self, query, key, value, attention_mask=None, head_mask=None): | |
| if head_mask is not None: | |
| # The super dispatch is done in the forward. | |
| raise ValueError( | |
| "PyTorch SDPA does not support head_mask. Please open an issue in Transformers repository." | |
| ) | |
| scale = None | |
| if not self.scale_attn_weights: | |
| scale = 1 | |
| # MQA models: (batch_size, query_length, num_heads * head_dim) | |
| # MHA models: (batch_size, num_heads, query_length, head_dim) | |
| query_shape = query.shape | |
| batch_size = query_shape[0] | |
| key.shape[-2] | |
| if self.multi_query: | |
| query_length = query_shape[1] | |
| # SDPA requires the dimension [..., sequence_length, head_dim]. | |
| query = query.view(batch_size, query_length, self.num_heads, self.head_dim).transpose(1, 2) | |
| # Without these unsqueeze, SDPA complains as the query and key/value have a different number of dimensions. | |
| key = key.unsqueeze(1) | |
| value = value.unsqueeze(1) | |
| # Although these expand are not numerically useful, PyTorch can not dispatch to memory-efficient backend | |
| # and flash attention backend (No available kernel. Aborting execution.) from the shapes | |
| # query = [batch_size, num_heads, query_length, head_dim] | |
| # key = [batch_size, 1, past_length, head_dim] | |
| # value = [batch_size, 1, past_length, head_dim] | |
| # | |
| # torch==2.1.2 is bugged with non-contiguous inputs with custom attn_mask (https://github.com/pytorch/pytorch/issues/112577), hence the check. | |
| if is_torch_greater_or_equal_than_2_2: | |
| key = key.expand(-1, self.num_heads, -1, -1) | |
| value = value.expand(-1, self.num_heads, -1, -1) | |
| else: | |
| query_length = query_shape[-1] | |
| # See the comment above. | |
| if query.device.type == "cuda" and attention_mask is not None: | |
| query = query.contiguous() | |
| key = key.contiguous() | |
| value = value.contiguous() | |
| sdpa_result = torch.nn.functional.scaled_dot_product_attention( | |
| query, | |
| key, | |
| value, | |
| attn_mask=attention_mask, | |
| dropout_p=self.attn_pdrop if self.training else 0.0, | |
| # The query_length > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case query_length == 1. | |
| is_causal=self.is_causal and attention_mask is None and query_length > 1, | |
| scale=scale, | |
| ) | |
| if self.multi_query: | |
| # (batch_size, num_heads, seq_len, head_dim) --> (batch_size, seq_len, num_heads, head_dim) | |
| sdpa_result = sdpa_result.transpose(1, 2) | |
| # Reshape is kind of expensive here, as it does a memory copy, | |
| # but I did not manage to make away without it (logits do not match when using view) | |
| # (batch_size, seq_len, num_heads, head_dim) --> (batch_size, seq_len, num_heads * head_dim) | |
| sdpa_result = sdpa_result.reshape(query_shape) | |
| return sdpa_result, None | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| layer_past: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| encoder_hidden_states: Optional[torch.Tensor] = None, | |
| encoder_attention_mask: Optional[torch.Tensor] = None, | |
| use_cache: Optional[bool] = False, | |
| output_attentions: Optional[bool] = False, | |
| ) -> Union[ | |
| Tuple[torch.Tensor, Optional[torch.Tensor]], | |
| Tuple[torch.Tensor, Optional[torch.Tensor], Tuple[torch.Tensor, ...]], | |
| ]: | |
| if encoder_hidden_states is not None: | |
| if not hasattr(self, "q_attn") or not self.is_cross_attention: | |
| raise ValueError( | |
| "If class is used as cross attention, the weights `q_attn` have to be defined. " | |
| "Please make sure to instantiate class with `GPTBigCodeAttention(..., is_cross_attention=True)`." | |
| ) | |
| query = self.q_attn(hidden_states) | |
| key_value = self.c_attn(encoder_hidden_states) | |
| attention_mask = encoder_attention_mask | |
| elif self.multi_query: | |
| query, key_value = self.c_attn(hidden_states).split((self.embed_dim, 2 * self.kv_dim), dim=2) | |
| else: | |
| # Note: We split as (self.num_heads, 3, self.head_dim) instead of (3, self.num_heads, self.head_dim), | |
| # i.e., the memory layout is not the same as GPT2. | |
| # This makes the concatenation with past_key_value more efficient. | |
| query, key_value = ( | |
| self.c_attn(hidden_states) | |
| .view(*hidden_states.shape[:2], self.num_heads, 3 * self.head_dim) | |
| .transpose(1, 2) | |
| .split((self.head_dim, 2 * self.head_dim), dim=3) | |
| ) | |
| if layer_past is not None: | |
| key_value = torch.cat((layer_past, key_value), dim=-2) | |
| present = key_value if use_cache else None | |
| key, value = key_value.split((self.head_dim, self.head_dim), dim=-1) | |
| if not output_attentions and head_mask is None: | |
| # Difference with the original implementation: there is no need to transpose the key here, | |
| # as SDPA expects seq_length to be at index -2 for the key as well | |
| attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask) | |
| else: | |
| # TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once this is implemented. | |
| logger.warning_once( | |
| "GPTBigCodeModel is using GPTBigCodeSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` and `head_mask` not None." | |
| ' Falling back to the manual attention implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' | |
| ) | |
| attn_output, attn_weights = super()._attn(query, key.transpose(-1, -2), value, attention_mask, head_mask) | |
| if not self.multi_query: | |
| attn_output = attn_output.transpose(1, 2).reshape(hidden_states.shape) | |
| attn_output = self.c_proj(attn_output) | |
| attn_output = self.resid_dropout(attn_output) | |
| outputs = (attn_output, present) | |
| if output_attentions: | |
| if self.multi_query: | |
| # Transpose to return weights in the usual format (batch_size, num_heads, query_length, key_length) | |
| attn_weights = attn_weights.transpose(1, 2) | |
| outputs += (attn_weights,) | |
| return outputs | |
| class GPTBigCodeMLP(nn.Module): | |
| def __init__(self, intermediate_size, config): | |
| super().__init__() | |
| embed_dim = config.hidden_size | |
| self.c_fc = nn.Linear(embed_dim, intermediate_size) | |
| self.c_proj = nn.Linear(intermediate_size, embed_dim) | |
| self.act = ACT2FN[config.activation_function] | |
| self.dropout = nn.Dropout(config.resid_pdrop) | |
| # Copied from transformers.models.gpt2.modeling_gpt2.GPT2MLP.forward | |
| def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor: | |
| hidden_states = self.c_fc(hidden_states) | |
| hidden_states = self.act(hidden_states) | |
| hidden_states = self.c_proj(hidden_states) | |
| hidden_states = self.dropout(hidden_states) | |
| return hidden_states | |
| GPTBIGCODE_ATTENTION_CLASSES = { | |
| "eager": GPTBigCodeAttention, | |
| "flash_attention_2": GPTBigCodeFlashAttention2, | |
| "sdpa": GPTBigCodeSdpaAttention, | |
| } | |
| class GPTBigCodeBlock(nn.Module): | |
| def __init__(self, config, layer_idx=None): | |
| super().__init__() | |
| hidden_size = config.hidden_size | |
| self.inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size | |
| self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) | |
| self.attn = GPTBIGCODE_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx) | |
| self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) | |
| if config.add_cross_attention: | |
| if config.multi_query: | |
| raise NotImplementedError("Cross-attention not implemented for MQA") | |
| self.crossattention = GPTBIGCODE_ATTENTION_CLASSES[config._attn_implementation]( | |
| config, is_cross_attention=True, layer_idx=layer_idx | |
| ) | |
| self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) | |
| self.mlp = GPTBigCodeMLP(self.inner_dim, config) | |
| def forward( | |
| self, | |
| hidden_states: Optional[Tuple[torch.Tensor]], | |
| layer_past: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| encoder_hidden_states: Optional[torch.Tensor] = None, | |
| encoder_attention_mask: Optional[torch.Tensor] = None, | |
| use_cache: Optional[bool] = False, | |
| output_attentions: Optional[bool] = False, | |
| ) -> Union[ | |
| Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.Tensor, torch.Tensor] | |
| ]: | |
| residual = hidden_states | |
| hidden_states = self.ln_1(hidden_states) | |
| attn_outputs = self.attn( | |
| hidden_states, | |
| layer_past=layer_past, | |
| attention_mask=attention_mask, | |
| head_mask=head_mask, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| ) | |
| attn_output = attn_outputs[0] # output_attn: a, present, (attentions) | |
| outputs = attn_outputs[1:] | |
| # residual connection | |
| hidden_states = attn_output + residual | |
| if encoder_hidden_states is not None: | |
| # add one self-attention block for cross-attention | |
| if not hasattr(self, "crossattention"): | |
| raise ValueError( | |
| f"If `encoder_hidden_states` are passed, {self} has to be instantiated with " | |
| "cross-attention layers by setting `config.add_cross_attention=True`" | |
| ) | |
| residual = hidden_states | |
| hidden_states = self.ln_cross_attn(hidden_states) | |
| cross_attn_outputs = self.crossattention( | |
| hidden_states, | |
| attention_mask=attention_mask, | |
| head_mask=head_mask, | |
| encoder_hidden_states=encoder_hidden_states, | |
| encoder_attention_mask=encoder_attention_mask, | |
| output_attentions=output_attentions, | |
| ) | |
| attn_output = cross_attn_outputs[0] | |
| # residual connection | |
| hidden_states = residual + attn_output | |
| outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights | |
| residual = hidden_states | |
| hidden_states = self.ln_2(hidden_states) | |
| feed_forward_hidden_states = self.mlp(hidden_states) | |
| # residual connection | |
| hidden_states = residual + feed_forward_hidden_states | |
| if use_cache: | |
| outputs = (hidden_states,) + outputs | |
| else: | |
| outputs = (hidden_states,) + outputs[1:] | |
| return outputs # hidden_states, present, (attentions, cross_attentions) | |
| class GPTBigCodePreTrainedModel(PreTrainedModel): | |
| """ | |
| An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
| models. | |
| """ | |
| config_class = GPTBigCodeConfig | |
| base_model_prefix = "transformer" | |
| supports_gradient_checkpointing = True | |
| _no_split_modules = ["GPTBigCodeBlock"] | |
| _skip_keys_device_placement = "past_key_values" | |
| _supports_flash_attn_2 = True | |
| _supports_sdpa = True | |
| def __init__(self, *inputs, **kwargs): | |
| super().__init__(*inputs, **kwargs) | |
| def _init_weights(self, module): | |
| """Initialize the weights.""" | |
| if isinstance(module, (GPTBigCodeMLP, GPTBigCodeAttention)): | |
| # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme: | |
| # > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale | |
| # > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers. | |
| # > -- GPT-2 :: https://openai.com/blog/better-language-models/ | |
| # | |
| # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py | |
| module.c_proj.weight.data.normal_( | |
| mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer)) | |
| ) | |
| module.c_proj._is_hf_initialized = True | |
| elif isinstance(module, nn.Linear): | |
| # Slightly different from the TF version which uses truncated_normal for initialization | |
| # cf https://github.com/pytorch/pytorch/pull/5617 | |
| module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
| if module.bias is not None: | |
| module.bias.data.zero_() | |
| elif isinstance(module, nn.Embedding): | |
| module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
| if module.padding_idx is not None: | |
| module.weight.data[module.padding_idx].zero_() | |
| elif isinstance(module, nn.LayerNorm): | |
| module.bias.data.zero_() | |
| module.weight.data.fill_(1.0) | |
| GPT_BIGCODE_START_DOCSTRING = r""" | |
| This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
| library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
| etc.) | |
| This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
| Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
| and behavior. | |
| Parameters: | |
| config ([`GPTBigCodeConfig`]): Model configuration class with all the parameters of the model. | |
| Initializing with a config file does not load the weights associated with the model, only the | |
| configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
| """ | |
| GPT_BIGCODE_INPUTS_DOCSTRING = r""" | |
| Args: | |
| input_ids (`torch.Tensor` of shape `(batch_size, input_ids_length)`): | |
| `input_ids_length` = `sequence_length` if `past_key_values` is `None` else | |
| `past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input | |
| sequence tokens in the vocabulary. | |
| If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as | |
| `input_ids`. | |
| Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
| [`PreTrainedTokenizer.__call__`] for details. | |
| [What are input IDs?](../glossary#input-ids) | |
| past_key_values (`Tuple[torch.Tensor]` of length `config.n_layers`): | |
| Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see | |
| `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have | |
| their past given to this model should not be passed as `input_ids` as they have already been computed. | |
| attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| If `past_key_values` is used, `attention_mask` needs to contain the masking strategy that was used for | |
| `past_key_values`. In other words, the `attention_mask` always has to have the length: | |
| `len(past_key_values) + len(input_ids)` | |
| [What are attention masks?](../glossary#attention-mask) | |
| token_type_ids (`torch.Tensor` of shape `(batch_size, input_ids_length)`, *optional*): | |
| Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, | |
| 1]`: | |
| - 0 corresponds to a *sentence A* token, | |
| - 1 corresponds to a *sentence B* token. | |
| [What are token type IDs?](../glossary#token-type-ids) | |
| position_ids (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
| config.max_position_embeddings - 1]`. | |
| [What are position IDs?](../glossary#position-ids) | |
| head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
| Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| inputs_embeds (`torch.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
| Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
| is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
| model's internal embedding lookup matrix. | |
| If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see | |
| `past_key_values`). | |
| use_cache (`bool`, *optional*): | |
| If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
| `past_key_values`). | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
| tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
| more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| class GPTBigCodeModel(GPTBigCodePreTrainedModel): | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.multi_query = config.multi_query | |
| self.embed_dim = config.hidden_size | |
| self.wte = nn.Embedding(config.vocab_size, self.embed_dim) | |
| self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim) | |
| self.drop = nn.Dropout(config.embd_pdrop) | |
| self.h = nn.ModuleList([GPTBigCodeBlock(config, layer_idx=i) for i in range(config.num_hidden_layers)]) | |
| self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) | |
| max_positions = config.max_position_embeddings | |
| self.register_buffer( | |
| "bias", torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)), persistent=False | |
| ) | |
| self.gradient_checkpointing = False | |
| self._use_sdpa = config._attn_implementation == "sdpa" | |
| self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self): | |
| return self.wte | |
| def set_input_embeddings(self, new_embeddings): | |
| self.wte = new_embeddings | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.Tensor] = None, | |
| past_key_values: Optional[List[torch.Tensor]] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| token_type_ids: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.Tensor] = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| inputs_embeds: Optional[torch.Tensor] = None, | |
| encoder_hidden_states: Optional[torch.Tensor] = None, | |
| encoder_attention_mask: Optional[torch.Tensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| use_cache = use_cache if use_cache is not None else self.config.use_cache | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| if input_ids is not None and inputs_embeds is not None: | |
| raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
| elif input_ids is not None: | |
| self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) | |
| input_shape = input_ids.size() | |
| input_ids = input_ids.view(-1, input_shape[-1]) | |
| batch_size = input_ids.shape[0] | |
| elif inputs_embeds is not None: | |
| input_shape = inputs_embeds.size()[:-1] | |
| batch_size = inputs_embeds.shape[0] | |
| else: | |
| raise ValueError("You have to specify either input_ids or inputs_embeds") | |
| if batch_size <= 0: | |
| raise ValueError("batch_size has to be defined and > 0") | |
| device = input_ids.device if input_ids is not None else inputs_embeds.device | |
| if token_type_ids is not None: | |
| token_type_ids = token_type_ids.view(-1, input_shape[-1]) | |
| if past_key_values is None: | |
| past_length = 0 | |
| past_key_values = tuple([None] * len(self.h)) | |
| else: | |
| past_length = past_key_values[0].size(-2) | |
| if attention_mask is not None and len(attention_mask.shape) == 2 and position_ids is None: | |
| # create position_ids on the fly for batch generation | |
| position_ids = attention_mask.long().cumsum(-1) - 1 | |
| position_ids.masked_fill_(attention_mask == 0, 1) | |
| if past_length > 0: | |
| position_ids = position_ids[:, past_length : input_shape[-1] + past_length :] | |
| elif position_ids is None: | |
| position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device) | |
| position_ids = position_ids.unsqueeze(0) | |
| # Self-attention mask. | |
| query_length = input_shape[-1] | |
| key_length = past_length + query_length | |
| self_attention_mask = self.bias[None, key_length - query_length : key_length, :key_length] | |
| if self._use_flash_attention_2: | |
| # 2d mask is passed through the layers | |
| attention_mask = attention_mask.bool() if (attention_mask is not None and 0 in attention_mask) else None | |
| encoder_attention_mask = ( | |
| encoder_attention_mask.bool() | |
| if (encoder_attention_mask is not None and 0 in encoder_attention_mask) | |
| else None | |
| ) | |
| else: | |
| # 4d mask is passed through the layers | |
| if attention_mask is not None: | |
| self_attention_mask = self_attention_mask * attention_mask.view(batch_size, 1, -1).to( | |
| dtype=torch.bool, device=self_attention_mask.device | |
| ) | |
| # MQA models: (batch_size, query_length, n_heads, key_length) | |
| # MHA models: (batch_size, n_heads, query_length, key_length) | |
| self_attention_mask = self_attention_mask.unsqueeze(2 if self.multi_query else 1) | |
| if self._use_sdpa and head_mask is None and not output_attentions: | |
| # SDPA with a custom mask is much faster in fp16/fp32 dtype rather than bool. Cast here to floating point instead of at every layer. | |
| dtype = self.wte.weight.dtype | |
| min_dtype = torch.finfo(dtype).min | |
| self_attention_mask = torch.where( | |
| self_attention_mask, | |
| torch.full([], 0.0, dtype=dtype, device=self_attention_mask.device), | |
| torch.full([], min_dtype, dtype=dtype, device=self_attention_mask.device), | |
| ) | |
| # output_attentions=True can not be supported when using SDPA, and we fall back on | |
| # the manual implementation that requires a 4D causal mask in all cases. | |
| if self.multi_query: | |
| # gpt_bigcode using MQA has the bad taste to use a causal mask with shape | |
| # [batch_size, target_length, 1, source_length], not compatible with SDPA, hence this transpose. | |
| self_attention_mask = self_attention_mask.transpose(1, 2) | |
| if query_length > 1 and attention_mask is not None and attention_mask.device.type == "cuda": | |
| # From PyTorch 2.1 onwards, F.scaled_dot_product_attention with the memory-efficient attention backend | |
| # produces nans if sequences are completely unattended in the attention mask. Details: https://github.com/pytorch/pytorch/issues/110213 | |
| self_attention_mask = AttentionMaskConverter._unmask_unattended( | |
| self_attention_mask, min_dtype=min_dtype | |
| ) | |
| attention_mask = self_attention_mask | |
| # If a 2D or 3D attention mask is provided for the cross-attention | |
| # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] | |
| if ( | |
| self.config.add_cross_attention | |
| and encoder_hidden_states is not None | |
| and encoder_attention_mask is not None | |
| ): | |
| if encoder_attention_mask.dim() == 2: | |
| encoder_attention_mask.unsqueeze(1) | |
| assert encoder_attention_mask.dim() == 3 | |
| encoder_attention_mask = encoder_attention_mask.bool().unsqueeze(2 if self.multi_query else 1) | |
| else: | |
| encoder_attention_mask = None | |
| # Prepare head mask if needed | |
| # 1.0 in head_mask indicate we keep the head | |
| # attention_probs has shape bsz x n_heads x N x N | |
| # head_mask has shape n_layer x batch x n_heads x N x N | |
| head_mask = self.get_head_mask(head_mask, self.config.n_layer) | |
| if inputs_embeds is None: | |
| inputs_embeds = self.wte(input_ids) | |
| position_embeds = self.wpe(position_ids) | |
| hidden_states = inputs_embeds + position_embeds | |
| if token_type_ids is not None: | |
| token_type_embeds = self.wte(token_type_ids) | |
| hidden_states = hidden_states + token_type_embeds | |
| hidden_states = self.drop(hidden_states) | |
| output_shape = input_shape + (hidden_states.size(-1),) | |
| presents = [] if use_cache else None | |
| all_self_attentions = () if output_attentions else None | |
| all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None | |
| all_hidden_states = () if output_hidden_states else None | |
| for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): | |
| if output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states,) | |
| if self.gradient_checkpointing and self.training: | |
| outputs = self._gradient_checkpointing_func( | |
| block.__call__, | |
| hidden_states, | |
| None, | |
| attention_mask, | |
| head_mask[i], | |
| encoder_hidden_states, | |
| encoder_attention_mask, | |
| use_cache, | |
| output_attentions, | |
| ) | |
| else: | |
| outputs = block( | |
| hidden_states, | |
| layer_past=layer_past, | |
| attention_mask=attention_mask, | |
| head_mask=head_mask[i], | |
| encoder_hidden_states=encoder_hidden_states, | |
| encoder_attention_mask=encoder_attention_mask, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states = outputs[0] | |
| if use_cache: | |
| presents.append(outputs[1]) | |
| if output_attentions: | |
| all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) | |
| if self.config.add_cross_attention: | |
| all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],) | |
| hidden_states = self.ln_f(hidden_states) | |
| hidden_states = hidden_states.view(output_shape) | |
| # Add last hidden state | |
| if output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states,) | |
| if not return_dict: | |
| return tuple( | |
| v | |
| for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions] | |
| if v is not None | |
| ) | |
| return BaseModelOutputWithPastAndCrossAttentions( | |
| last_hidden_state=hidden_states, | |
| past_key_values=presents, | |
| hidden_states=all_hidden_states, | |
| attentions=all_self_attentions, | |
| cross_attentions=all_cross_attentions, | |
| ) | |
| class GPTBigCodeForCausalLM(GPTBigCodePreTrainedModel): | |
| _tied_weights_keys = ["lm_head.weight"] | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.transformer = GPTBigCodeModel(config) | |
| self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_output_embeddings(self): | |
| return self.lm_head | |
| def set_output_embeddings(self, new_embeddings): | |
| self.lm_head = new_embeddings | |
| def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): | |
| token_type_ids = kwargs.get("token_type_ids", None) | |
| # Omit tokens covered by past_key_values | |
| if past_key_values: | |
| if self.config.multi_query: | |
| past_length = past_key_values[0].shape[1] | |
| else: | |
| past_length = past_key_values[0].shape[2] | |
| # Some generation methods already pass only the last input ID | |
| if input_ids.shape[1] > past_length: | |
| remove_prefix_length = past_length | |
| else: | |
| # Default to old behavior: keep only final ID | |
| remove_prefix_length = input_ids.shape[1] - 1 | |
| input_ids = input_ids[:, remove_prefix_length:] | |
| if token_type_ids is not None: | |
| token_type_ids = token_type_ids[:, -input_ids.shape[1] :] | |
| attention_mask = kwargs.get("attention_mask", None) | |
| position_ids = kwargs.get("position_ids", None) | |
| if attention_mask is not None and position_ids is None: | |
| # create position_ids on the fly for batch generation | |
| position_ids = attention_mask.long().cumsum(-1) - 1 | |
| position_ids.masked_fill_(attention_mask == 0, 1) | |
| if past_key_values: | |
| position_ids = position_ids[:, -input_ids.shape[1] :] | |
| else: | |
| position_ids = None | |
| # if `inputs_embeds` are passed, we only want to use them in the 1st generation step | |
| if inputs_embeds is not None and past_key_values is None: | |
| model_inputs = {"inputs_embeds": inputs_embeds} | |
| else: | |
| model_inputs = {"input_ids": input_ids} | |
| model_inputs.update( | |
| { | |
| "past_key_values": past_key_values, | |
| "use_cache": kwargs.get("use_cache"), | |
| "position_ids": position_ids, | |
| "attention_mask": attention_mask, | |
| "token_type_ids": token_type_ids, | |
| } | |
| ) | |
| return model_inputs | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.Tensor] = None, | |
| past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| token_type_ids: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.Tensor] = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| inputs_embeds: Optional[torch.Tensor] = None, | |
| encoder_hidden_states: Optional[torch.Tensor] = None, | |
| encoder_attention_mask: Optional[torch.Tensor] = None, | |
| labels: Optional[torch.Tensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: | |
| r""" | |
| labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set | |
| `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` | |
| are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` | |
| """ | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| transformer_outputs = self.transformer( | |
| input_ids, | |
| past_key_values=past_key_values, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| position_ids=position_ids, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| encoder_hidden_states=encoder_hidden_states, | |
| encoder_attention_mask=encoder_attention_mask, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| hidden_states = transformer_outputs[0] | |
| lm_logits = self.lm_head(hidden_states) | |
| loss = None | |
| if labels is not None: | |
| # Shift so that tokens < n predict n | |
| shift_logits = lm_logits[..., :-1, :].contiguous() | |
| shift_labels = labels[..., 1:].contiguous().to(shift_logits.device) | |
| # Flatten the tokens | |
| loss_fct = CrossEntropyLoss() | |
| loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) | |
| if not return_dict: | |
| output = (lm_logits,) + transformer_outputs[1:] | |
| return ((loss,) + output) if loss is not None else output | |
| return CausalLMOutputWithCrossAttentions( | |
| loss=loss, | |
| logits=lm_logits, | |
| past_key_values=transformer_outputs.past_key_values, | |
| hidden_states=transformer_outputs.hidden_states, | |
| attentions=transformer_outputs.attentions, | |
| cross_attentions=transformer_outputs.cross_attentions, | |
| ) | |
| def _reorder_cache( | |
| past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor | |
| ) -> Tuple[Tuple[torch.Tensor]]: | |
| """ | |
| This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or | |
| [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct | |
| beam_idx at every generation step. | |
| """ | |
| return tuple(layer_past.index_select(0, beam_idx.to(layer_past.device)) for layer_past in past_key_values) | |
| class GPTBigCodeForSequenceClassification(GPTBigCodePreTrainedModel): | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.num_labels = config.num_labels | |
| self.transformer = GPTBigCodeModel(config) | |
| self.score = nn.Linear(config.n_embd, self.num_labels, bias=False) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.Tensor] = None, | |
| past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| token_type_ids: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.Tensor] = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| inputs_embeds: Optional[torch.Tensor] = None, | |
| labels: Optional[torch.Tensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, SequenceClassifierOutputWithPast]: | |
| r""" | |
| labels (`torch.Tensor` of shape `(batch_size,)`, *optional*): | |
| Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
| config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
| `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
| """ | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| transformer_outputs = self.transformer( | |
| input_ids, | |
| past_key_values=past_key_values, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| position_ids=position_ids, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| hidden_states = transformer_outputs[0] | |
| logits = self.score(hidden_states) | |
| if input_ids is not None: | |
| batch_size, sequence_length = input_ids.shape[:2] | |
| else: | |
| batch_size, sequence_length = inputs_embeds.shape[:2] | |
| assert ( | |
| self.config.pad_token_id is not None or batch_size == 1 | |
| ), "Cannot handle batch sizes > 1 if no padding token is defined." | |
| if self.config.pad_token_id is None: | |
| sequence_lengths = -1 | |
| else: | |
| if input_ids is not None: | |
| # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility | |
| sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 | |
| sequence_lengths = sequence_lengths % input_ids.shape[-1] | |
| sequence_lengths = sequence_lengths.to(logits.device) | |
| else: | |
| sequence_lengths = -1 | |
| logger.warning( | |
| f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " | |
| "unexpected if using padding tokens in conjunction with `inputs_embeds.`" | |
| ) | |
| pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] | |
| loss = None | |
| if labels is not None: | |
| labels = labels.to(logits.device) | |
| if self.config.problem_type is None: | |
| if self.num_labels == 1: | |
| self.config.problem_type = "regression" | |
| elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
| self.config.problem_type = "single_label_classification" | |
| else: | |
| self.config.problem_type = "multi_label_classification" | |
| if self.config.problem_type == "regression": | |
| loss_fct = MSELoss() | |
| if self.num_labels == 1: | |
| loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) | |
| else: | |
| loss = loss_fct(pooled_logits, labels) | |
| elif self.config.problem_type == "single_label_classification": | |
| loss_fct = CrossEntropyLoss() | |
| loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) | |
| elif self.config.problem_type == "multi_label_classification": | |
| loss_fct = BCEWithLogitsLoss() | |
| loss = loss_fct(pooled_logits, labels) | |
| if not return_dict: | |
| output = (pooled_logits,) + transformer_outputs[1:] | |
| return ((loss,) + output) if loss is not None else output | |
| return SequenceClassifierOutputWithPast( | |
| loss=loss, | |
| logits=pooled_logits, | |
| past_key_values=transformer_outputs.past_key_values, | |
| hidden_states=transformer_outputs.hidden_states, | |
| attentions=transformer_outputs.attentions, | |
| ) | |
| class GPTBigCodeForTokenClassification(GPTBigCodePreTrainedModel): | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.num_labels = config.num_labels | |
| self.transformer = GPTBigCodeModel(config) | |
| if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None: | |
| classifier_dropout = config.classifier_dropout | |
| elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None: | |
| classifier_dropout = config.hidden_dropout | |
| else: | |
| classifier_dropout = 0.1 | |
| self.dropout = nn.Dropout(classifier_dropout) | |
| self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.Tensor] = None, | |
| past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| token_type_ids: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.Tensor] = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| inputs_embeds: Optional[torch.Tensor] = None, | |
| labels: Optional[torch.Tensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, TokenClassifierOutput]: | |
| r""" | |
| labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
| config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
| `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
| """ | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| transformer_outputs = self.transformer( | |
| input_ids, | |
| past_key_values=past_key_values, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| position_ids=position_ids, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| hidden_states = transformer_outputs[0] | |
| hidden_states = self.dropout(hidden_states) | |
| logits = self.classifier(hidden_states) | |
| loss = None | |
| if labels is not None: | |
| loss_fct = CrossEntropyLoss() | |
| loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1).to(logits.device)) | |
| if not return_dict: | |
| output = (logits,) + transformer_outputs[2:] | |
| return ((loss,) + output) if loss is not None else output | |
| return TokenClassifierOutput( | |
| loss=loss, | |
| logits=logits, | |
| hidden_states=transformer_outputs.hidden_states, | |
| attentions=transformer_outputs.attentions, | |
| ) | |