Spaces:
Paused
Paused
| from transformers import ( | |
| PretrainedConfig, | |
| PreTrainedModel | |
| ) | |
| from torch.nn import CrossEntropyLoss | |
| from transformers.models.gpt_bigcode.modeling_gpt_bigcode import CausalLMOutputWithCrossAttentions | |
| from typing import Optional, Tuple, Union | |
| import torch | |
| from transformers.processing_utils import ProcessorMixin | |
| from torchvision import transforms | |
| from torchvision.transforms.functional import InterpolationMode, pad | |
| from transformers.feature_extraction_sequence_utils import BatchFeature | |
| from transformers import AutoProcessor | |
| class SimpleStarVectorProcessor(ProcessorMixin): | |
| attributes = ["tokenizer"] # Only include tokenizer in attributes | |
| valid_kwargs = ["size", "mean", "std"] # Add other parameters as valid kwargs | |
| image_processor_class = "AutoImageProcessor" | |
| tokenizer_class = "AutoTokenizer" | |
| def __init__(self, | |
| tokenizer=None, # Make tokenizer the first argument | |
| size=224, | |
| mean=None, | |
| std=None, | |
| **kwargs, | |
| ): | |
| if mean is None: | |
| mean = (0.48145466, 0.4578275, 0.40821073) | |
| if std is None: | |
| std = (0.26862954, 0.26130258, 0.27577711) | |
| # Store these as instance variables | |
| self.mean = mean | |
| self.std = std | |
| self.size = size | |
| self.normalize = transforms.Normalize(mean=mean, std=std) | |
| self.transform = transforms.Compose([ | |
| transforms.Lambda(lambda img: img.convert("RGB") if img.mode == "RGBA" else img), | |
| transforms.Lambda(lambda img: self._pad_to_square(img)), | |
| transforms.Resize(size, interpolation=InterpolationMode.BICUBIC), | |
| transforms.ToTensor(), | |
| self.normalize | |
| ]) | |
| # Initialize parent class with tokenizer | |
| super().__init__(tokenizer=tokenizer) | |
| def __call__(self, images=None, text=None, max_length=None, **kwargs) -> BatchFeature: | |
| """ | |
| Process images and/or text inputs. | |
| Args: | |
| images: Optional image input(s) | |
| text: Optional text input(s) | |
| **kwargs: Additional arguments | |
| """ | |
| if images is None and text is None: | |
| raise ValueError("You have to specify at least one of `images` or `text`.") | |
| image_inputs = {} | |
| if images is not None: | |
| if isinstance(images, (list, tuple)): | |
| images_ = torch.stack([self.transform(img) for img in images]) | |
| else: | |
| images_ = self.transform(images) | |
| image_inputs = {"pixel_values": images_} | |
| text_inputs = {} | |
| if text is not None: | |
| text_inputs = self.tokenizer( | |
| text, truncation=True, | |
| add_special_tokens=True, | |
| padding='longest', | |
| max_length=max_length, | |
| return_tensors="pt" | |
| ) | |
| return BatchFeature(data={**text_inputs, **image_inputs}) | |
| def _pad_to_square(self, img): | |
| # Calculate padding to make the image square | |
| width, height = img.size | |
| max_dim = max(width, height) | |
| padding = [(max_dim - width) // 2, (max_dim - height) // 2] | |
| padding += [max_dim - width - padding[0], max_dim - height - padding[1]] | |
| return pad(img, padding, fill=255) # Assuming white padding | |
| AutoProcessor.register(SimpleStarVectorProcessor, SimpleStarVectorProcessor) | |
| class StarVectorConfig(PretrainedConfig): | |
| model_type = "starvector" | |
| def __init__( | |
| self, | |
| starcoder_model_name: str = "bigcode/starcoderbase-1b", | |
| image_encoder_type: str = "clip", | |
| adapter_norm: str = "layer_norm", | |
| image_size: int = 224, | |
| max_length: int = 8192, | |
| max_length_train: int = 8192, | |
| use_flash_attn: bool = True, | |
| use_cache: bool = True, | |
| num_attention_heads: int = 16, | |
| num_hidden_layers: int = 24, | |
| vocab_size: int = 49152, | |
| hidden_size: int = 2048, | |
| num_kv_heads: int = 4, | |
| torch_dtype: str = "bfloat16", | |
| **kwargs, | |
| ): | |
| kwargs["torch_dtype"] = torch_dtype | |
| self.starcoder_model_name = starcoder_model_name | |
| self.image_encoder_type = image_encoder_type | |
| self.adapter_norm = adapter_norm | |
| self.image_size = image_size | |
| self.max_length = max_length | |
| self.max_length_train = max_length_train | |
| self.use_flash_attn = use_flash_attn | |
| self.use_cache = use_cache | |
| self.num_attention_heads = num_attention_heads | |
| self.num_hidden_layers = num_hidden_layers | |
| self.vocab_size = vocab_size | |
| self.hidden_size = hidden_size | |
| self.num_kv_heads = num_kv_heads | |
| super().__init__(**kwargs) | |
| class StarVectorForCausalLM(PreTrainedModel): | |
| config_class = StarVectorConfig | |
| _no_split_modules = [] | |
| def __init__(self, config: StarVectorConfig, **kwargs): | |
| super().__init__(config) | |
| starcoder_model_name = config.starcoder_model_name | |
| if 'starcoder2' in starcoder_model_name: | |
| from starvector.model.models.starvector_v2 import StarVectorStarCoder2 | |
| self.model = StarVectorStarCoder2(config=config, **kwargs) | |
| else: | |
| from starvector.model.models.starvector_v1 import StarVectorStarCoder | |
| self.model = StarVectorStarCoder(config=config, **kwargs) | |
| def supports_gradient_checkpointing(self): | |
| # If the underlying transformer (e.g., the one in StarCoderModel) | |
| # supports gradient checkpointing, delegate to it. | |
| if hasattr(self.model, 'svg_transformer'): | |
| return getattr(self.model.svg_transformer, 'supports_gradient_checkpointing', False) | |
| return False | |
| def gradient_checkpointing_enable(self): | |
| # Optionally, forward this call to the internal transformer. | |
| if hasattr(self.model, 'svg_transformer') and hasattr(self.model.svg_transformer, 'gradient_checkpointing_enable'): | |
| self.model.svg_transformer.gradient_checkpointing_enable() | |
| def forward(self, vision_embeds, input_ids, num_generations, attention_mask, num_logits_to_keep) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: | |
| completion_embeds = self.model._get_embeddings(input_ids) | |
| inputs_embeds = torch.cat([vision_embeds.repeat(num_generations, 1, 1), completion_embeds], dim=1) | |
| transformer_outputs = self.model.svg_transformer.transformer.transformer( | |
| inputs_embeds=inputs_embeds, | |
| attention_mask=attention_mask, | |
| ) | |
| hidden_states = transformer_outputs[0] | |
| if num_logits_to_keep > 0: | |
| lm_logits = self.model.svg_transformer.transformer.lm_head(hidden_states[:, -num_logits_to_keep:, :]) | |
| else: | |
| lm_logits = self.model.svg_transformer.transformer.lm_head(hidden_states) | |
| loss = None | |
| return CausalLMOutputWithCrossAttentions( | |
| loss=loss, | |
| logits=lm_logits, | |
| past_key_values=transformer_outputs.past_key_values, | |
| hidden_states=transformer_outputs.hidden_states, | |
| attentions=transformer_outputs.attentions, | |
| cross_attentions=transformer_outputs.cross_attentions, | |
| ) | |
| def generate_im2svg(self, batch, **kwargs): | |
| return self.model.generate_im2svg(batch, **kwargs) | |
| def generate_im2text(self, batch, **kwargs): | |
| return self.model.generate_im2text(batch, **kwargs) | |
| def process_images(self, images): | |
| return self.model.image_encoder.process_images(images) | |