Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,63 +1,78 @@
|
|
| 1 |
from collections.abc import Iterator
|
| 2 |
from datetime import datetime
|
| 3 |
from pathlib import Path
|
| 4 |
-
from
|
| 5 |
-
from huggingface_hub import hf_hub_download
|
| 6 |
from themes.research_monochrome import ResearchMonochrome
|
| 7 |
-
import
|
| 8 |
-
import gradio as gr
|
| 9 |
-
from llama_cpp import Llama # <-- Neu: Llama-Klasse importieren
|
| 10 |
-
import os
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
today_date = datetime.today().strftime("%B %-d, %Y") # noqa: DTZ002
|
| 15 |
-
SYS_PROMPT = f"""Today's Date: {today_date}.You are Granite, developed by IBM. You are a helpful AI assistant"""
|
| 16 |
-
TITLE = "IBM Granite 4 Tiny Preview served via llama-cpp-python"
|
| 17 |
-
DESCRIPTION = """<p>Granite 4 Tiny is an open-source LLM supporting a 128k context window. This demo uses only 2K context.<span class="gr_docs_link"><a href="https://www.ibm.com/granite/docs/">View Documentation <i class="fa fa-external-link"></i></a></span></p>"""
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
MAX_NEW_TOKENS = 1024
|
| 20 |
TEMPERATURE = 0.7
|
| 21 |
TOP_P = 0.85
|
| 22 |
TOP_K = 50
|
| 23 |
REPETITION_PENALTY = 1.05
|
| 24 |
-
CONTEXT_WINDOW = 2048 # Kontextfenstergröße setzen
|
| 25 |
|
| 26 |
-
#
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
)
|
| 36 |
-
print(f"Model downloaded to: {model_path}")
|
| 37 |
|
| 38 |
-
#
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
model_path=model_path,
|
| 46 |
-
n_ctx=CONTEXT_WINDOW,
|
| 47 |
-
n_gpu_layers=999, # Entlädt alle Schichten auf die GPU
|
| 48 |
-
chat_format="chatml", # Granite 4 Tiny verwendet ein Format, das dem ChatML-Standard ähnelt
|
| 49 |
-
verbose=False
|
| 50 |
-
)
|
| 51 |
-
print("Llama model initialized successfully.")
|
| 52 |
-
except Exception as e:
|
| 53 |
-
print(f"Error initializing Llama model: {e}")
|
| 54 |
-
llama_model = None # Setze auf None, falls ein Fehler auftritt
|
| 55 |
|
| 56 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
custom_theme = ResearchMonochrome()
|
|
|
|
| 59 |
|
| 60 |
-
@spaces.GPU(duration=30)
|
| 61 |
def generate(
|
| 62 |
message: str,
|
| 63 |
chat_history: List[Dict],
|
|
@@ -67,70 +82,85 @@ def generate(
|
|
| 67 |
top_k: float = TOP_K,
|
| 68 |
max_new_tokens: int = MAX_NEW_TOKENS,
|
| 69 |
) -> Iterator[str]:
|
| 70 |
-
"""
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
try:
|
| 97 |
-
#
|
| 98 |
-
stream =
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
except Exception as e:
|
| 119 |
-
print(f"An error occurred
|
| 120 |
-
yield f"Error: {e}"
|
| 121 |
|
| 122 |
|
| 123 |
-
# --- Gradio UI-Setup (Unverändert) ---
|
| 124 |
-
|
| 125 |
css_file_path = Path(Path(__file__).parent / "app.css")
|
| 126 |
|
| 127 |
# advanced settings (displayed in Accordion)
|
| 128 |
temperature_slider = gr.Slider(
|
| 129 |
-
minimum=0, maximum=1.0, value=TEMPERATURE, step=0.1, label="Temperature", elem_classes=["gr_accordion_element"]
|
|
|
|
| 130 |
top_p_slider = gr.Slider(
|
| 131 |
-
minimum=0, maximum=1.0, value=TOP_P, step=0.05, label="Top P", elem_classes=["gr_accordion_element"]
|
|
|
|
| 132 |
top_k_slider = gr.Slider(
|
| 133 |
-
minimum=0, maximum=100, value=TOP_K, step=1, label="Top K", elem_classes=["gr_accordion_element"]
|
|
|
|
| 134 |
repetition_penalty_slider = gr.Slider(
|
| 135 |
minimum=0,
|
| 136 |
maximum=2.0,
|
|
@@ -155,14 +185,12 @@ with gr.Blocks(fill_height=True, css_paths=css_file_path, theme=custom_theme, ti
|
|
| 155 |
chat_interface = gr.ChatInterface(
|
| 156 |
fn=generate,
|
| 157 |
examples=[
|
| 158 |
-
["What is 1+1?"],
|
| 159 |
["Explain the concept of quantum computing to someone with no background in physics or computer science."],
|
| 160 |
["What is OpenShift?"],
|
| 161 |
["What's the importance of low latency inference?"],
|
| 162 |
["Help me boost productivity habits."],
|
| 163 |
],
|
| 164 |
example_labels=[
|
| 165 |
-
"What is 1+1?",
|
| 166 |
"Explain quantum computing",
|
| 167 |
"What is OpenShift?",
|
| 168 |
"Importance of low latency inference",
|
|
|
|
| 1 |
from collections.abc import Iterator
|
| 2 |
from datetime import datetime
|
| 3 |
from pathlib import Path
|
| 4 |
+
from threading import Thread
|
| 5 |
+
from huggingface_hub import hf_hub_download, login
|
| 6 |
from themes.research_monochrome import ResearchMonochrome
|
| 7 |
+
from typing import Iterator, List, Dict
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
import os
|
| 10 |
+
import requests
|
| 11 |
+
import json
|
| 12 |
+
import subprocess
|
| 13 |
+
import gradio as gr
|
| 14 |
|
| 15 |
today_date = datetime.today().strftime("%B %-d, %Y") # noqa: DTZ002
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
SYS_PROMPT = f"""Today's Date: {today_date}.
|
| 18 |
+
You are Granite, developed by IBM. You are a helpful AI assistant"""
|
| 19 |
+
TITLE = "IBM Granite 4 Micro served from local GGUF server"
|
| 20 |
+
DESCRIPTION = """
|
| 21 |
+
<p>Granite 4 Micro is an open-source LLM supporting a 128k context window. This demo uses only 2K context.
|
| 22 |
+
<span class="gr_docs_link">
|
| 23 |
+
<a href="https://www.ibm.com/granite/docs/">View Documentation <i class="fa fa-external-link"></i></a>
|
| 24 |
+
</span>
|
| 25 |
+
</p>
|
| 26 |
+
"""
|
| 27 |
+
LLAMA_CPP_SERVER = "http://127.0.0.1:8081"
|
| 28 |
MAX_NEW_TOKENS = 1024
|
| 29 |
TEMPERATURE = 0.7
|
| 30 |
TOP_P = 0.85
|
| 31 |
TOP_K = 50
|
| 32 |
REPETITION_PENALTY = 1.05
|
|
|
|
| 33 |
|
| 34 |
+
# determine platform: CUDA or CPU
|
| 35 |
+
try:
|
| 36 |
+
subprocess.run(["nvidia-smi"], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, check=True)
|
| 37 |
+
platform = "CUDA"
|
| 38 |
+
except subprocess.CalledProcessError:
|
| 39 |
+
platform = "CPU"
|
| 40 |
+
except FileNotFoundError:
|
| 41 |
+
platform = "CPU"
|
| 42 |
+
|
| 43 |
+
print(f"Detected platform {platform}")
|
| 44 |
+
|
| 45 |
+
# login to HF with space secret and download gguf and executable
|
| 46 |
+
#hf_token = os.getenv("HF_TOKEN") # Set this in your environment before running
|
| 47 |
+
#if hf_token:
|
| 48 |
+
# login(token=hf_token)
|
| 49 |
+
#else:
|
| 50 |
+
# raise ValueError("Hugging Face token not found. Please set HF_TOKEN environment variable.")
|
| 51 |
+
|
| 52 |
+
gguf_name = "granite-4.0-h-micro-UD-Q2_K_XL.gguf"
|
| 53 |
+
gguf_path = hf_hub_download(
|
| 54 |
+
repo_id="unsloth/granite-4.0-h-micro-GGUF",
|
| 55 |
+
filename=gguf_name,
|
| 56 |
+
local_dir="."
|
| 57 |
)
|
|
|
|
| 58 |
|
| 59 |
+
# set exe_name depending on platform
|
| 60 |
+
exe_name = "llama-server-6343-cuda" if platform == "CUDA" else "llama-server-6343-blas"
|
| 61 |
+
exe_path = hf_hub_download(
|
| 62 |
+
repo_id="TobDeBer/Skipper",
|
| 63 |
+
filename=exe_name,
|
| 64 |
+
local_dir="."
|
| 65 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
+
# start llama-server
|
| 68 |
+
subprocess.run(["chmod", "+x", exe_name])
|
| 69 |
+
command = ["./" + exe_name, "-m", gguf_name, "--temp", "0.0", "-c", "2048", "-t", "8", "--port", "8081"]
|
| 70 |
+
process = subprocess.Popen(command)
|
| 71 |
+
print(f"Llama-server process started with PID {process.pid}")
|
| 72 |
|
| 73 |
custom_theme = ResearchMonochrome()
|
| 74 |
+
print("Theme type:", type(custom_theme))
|
| 75 |
|
|
|
|
| 76 |
def generate(
|
| 77 |
message: str,
|
| 78 |
chat_history: List[Dict],
|
|
|
|
| 82 |
top_k: float = TOP_K,
|
| 83 |
max_new_tokens: int = MAX_NEW_TOKENS,
|
| 84 |
) -> Iterator[str]:
|
| 85 |
+
"""Generate function for chat demo using Llama.cpp server."""
|
| 86 |
+
|
| 87 |
+
# Build messages
|
| 88 |
+
conversation = []
|
| 89 |
+
conversation.append({"role": "system", "content": SYS_PROMPT})
|
| 90 |
+
conversation += chat_history
|
| 91 |
+
conversation.append({"role": "user", "content": message})
|
| 92 |
+
|
| 93 |
+
# Prepare the prompt for the Llama.cpp server
|
| 94 |
+
prompt = ""
|
| 95 |
+
for item in conversation:
|
| 96 |
+
if item["role"] == "system":
|
| 97 |
+
prompt += f"<|system|>\n{item['content']}\n<|file_separator|>\n"
|
| 98 |
+
elif item["role"] == "user":
|
| 99 |
+
prompt += f"<|user|>\n{item['content']}\n<|file_separator|>\n"
|
| 100 |
+
elif item["role"] == "assistant":
|
| 101 |
+
prompt += f"<|model|>\n{item['content']}\n<|file_separator|>\n"
|
| 102 |
+
prompt += "<|model|>\n" # Add the beginning token for the assistant
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
# Construct the request payload
|
| 106 |
+
payload = {
|
| 107 |
+
"prompt": prompt,
|
| 108 |
+
"stream": True, # Enable streaming
|
| 109 |
+
"max_tokens": max_new_tokens,
|
| 110 |
+
"temperature": temperature,
|
| 111 |
+
"repeat_penalty": repetition_penalty,
|
| 112 |
+
"top_p": top_p,
|
| 113 |
+
"top_k": top_k,
|
| 114 |
+
"stop": ["<|file_separator|>"], #stops after it sees this
|
| 115 |
+
}
|
| 116 |
+
|
| 117 |
try:
|
| 118 |
+
# Make the request to the Llama.cpp server
|
| 119 |
+
with requests.post(f"{LLAMA_CPP_SERVER}/completion", json=payload, stream=True, timeout=60) as response:
|
| 120 |
+
response.raise_for_status() # Raise HTTPError for bad responses (4xx or 5xx)
|
| 121 |
+
|
| 122 |
+
# Stream the response from the server
|
| 123 |
+
outputs = []
|
| 124 |
+
for line in response.iter_lines():
|
| 125 |
+
if line:
|
| 126 |
+
# Decode the line
|
| 127 |
+
decoded_line = line.decode('utf-8')
|
| 128 |
+
# Remove 'data: ' prefix if present
|
| 129 |
+
if decoded_line.startswith("data: "):
|
| 130 |
+
decoded_line = decoded_line[6:]
|
| 131 |
+
|
| 132 |
+
# Handle potential JSON decoding errors
|
| 133 |
+
try:
|
| 134 |
+
json_data = json.loads(decoded_line)
|
| 135 |
+
text = json_data.get("content", "") # Extract content field. crucial.
|
| 136 |
+
if text:
|
| 137 |
+
outputs.append(text)
|
| 138 |
+
yield "".join(outputs)
|
| 139 |
+
|
| 140 |
+
except json.JSONDecodeError:
|
| 141 |
+
print(f"JSONDecodeError: {decoded_line}")
|
| 142 |
+
# Handle the error, potentially skipping the line or logging it.
|
| 143 |
+
|
| 144 |
+
except requests.exceptions.RequestException as e:
|
| 145 |
+
print(f"Request failed: {e}")
|
| 146 |
+
yield f"Error: {e}" # Yield an error message to the user
|
| 147 |
except Exception as e:
|
| 148 |
+
print(f"An unexpected error occurred: {e}")
|
| 149 |
+
yield f"Error: {e}" # Yield error message
|
| 150 |
|
| 151 |
|
|
|
|
|
|
|
| 152 |
css_file_path = Path(Path(__file__).parent / "app.css")
|
| 153 |
|
| 154 |
# advanced settings (displayed in Accordion)
|
| 155 |
temperature_slider = gr.Slider(
|
| 156 |
+
minimum=0, maximum=1.0, value=TEMPERATURE, step=0.1, label="Temperature", elem_classes=["gr_accordion_element"]
|
| 157 |
+
)
|
| 158 |
top_p_slider = gr.Slider(
|
| 159 |
+
minimum=0, maximum=1.0, value=TOP_P, step=0.05, label="Top P", elem_classes=["gr_accordion_element"]
|
| 160 |
+
)
|
| 161 |
top_k_slider = gr.Slider(
|
| 162 |
+
minimum=0, maximum=100, value=TOP_K, step=1, label="Top K", elem_classes=["gr_accordion_element"]
|
| 163 |
+
)
|
| 164 |
repetition_penalty_slider = gr.Slider(
|
| 165 |
minimum=0,
|
| 166 |
maximum=2.0,
|
|
|
|
| 185 |
chat_interface = gr.ChatInterface(
|
| 186 |
fn=generate,
|
| 187 |
examples=[
|
|
|
|
| 188 |
["Explain the concept of quantum computing to someone with no background in physics or computer science."],
|
| 189 |
["What is OpenShift?"],
|
| 190 |
["What's the importance of low latency inference?"],
|
| 191 |
["Help me boost productivity habits."],
|
| 192 |
],
|
| 193 |
example_labels=[
|
|
|
|
| 194 |
"Explain quantum computing",
|
| 195 |
"What is OpenShift?",
|
| 196 |
"Importance of low latency inference",
|