Tonic's picture
Upload app.py with huggingface_hub
05b47fe verified
raw
history blame
10.3 kB
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, pipeline
import torch
from threading import Thread
import gradio as gr
import spaces
import re
import logging
import os
from peft import PeftModel
# Environment variables for GPT-OSS model configuration
import os
os.environ['HF_MODEL_ID'] = 'Tonic/med-gpt-oss-20b'
os.environ['LORA_MODEL_ID'] = 'Tonic/med-gpt-oss-20b'
os.environ['BASE_MODEL_ID'] = 'openai/gpt-oss-20b'
os.environ['MODEL_SUBFOLDER'] = ''
os.environ['MODEL_NAME'] = 'med-gpt-oss-20b'
# ----------------------------------------------------------------------
# Environment Variables Configuration
# ----------------------------------------------------------------------
# Get model configuration from environment variables
BASE_MODEL_ID = os.getenv('BASE_MODEL_ID', 'openai/gpt-oss-20b')
LORA_MODEL_ID = os.getenv('LORA_MODEL_ID', os.getenv('HF_MODEL_ID', 'Tonic/gpt-oss-20b-multilingual-reasoner'))
MODEL_NAME = os.getenv('MODEL_NAME', 'GPT-OSS Multilingual Reasoner')
MODEL_SUBFOLDER = os.getenv('MODEL_SUBFOLDER', '')
# If the LORA_MODEL_ID is the same as BASE_MODEL_ID, this is a merged model, not LoRA
USE_LORA = LORA_MODEL_ID != BASE_MODEL_ID and not LORA_MODEL_ID.startswith(BASE_MODEL_ID)
print(f"🔧 Configuration:")
print(f" Base Model: {BASE_MODEL_ID}")
print(f" Model ID: {LORA_MODEL_ID}")
print(f" Model Name: {MODEL_NAME}")
print(f" Model Subfolder: {MODEL_SUBFOLDER}")
print(f" Use LoRA: {USE_LORA}")
# ----------------------------------------------------------------------
# KaTeX delimiter config for Gradio
# ----------------------------------------------------------------------
LATEX_DELIMS = [
{"left": "$$", "right": "$$", "display": True},
{"left": "$", "right": "$", "display": False},
{"left": "\\[", "right": "\\]", "display": True},
{"left": "\\(", "right": "\\)", "display": False},
]
# Configure logging
logging.basicConfig(level=logging.INFO)
# Load the model
try:
if USE_LORA:
# Load base model and LoRA adapter separately
print(f"🔄 Loading base model: {BASE_MODEL_ID}")
base_model = AutoModelForCausalLM.from_pretrained(
BASE_MODEL_ID,
torch_dtype="auto",
device_map="auto",
attn_implementation="kernels-community/vllm-flash-attn3"
)
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_ID)
# Load the LoRA adapter
try:
print(f"🔄 Loading LoRA adapter: {LORA_MODEL_ID}")
if MODEL_SUBFOLDER and MODEL_SUBFOLDER.strip():
model = PeftModel.from_pretrained(base_model, LORA_MODEL_ID, subfolder=MODEL_SUBFOLDER)
else:
model = PeftModel.from_pretrained(base_model, LORA_MODEL_ID)
print("✅ LoRA model loaded successfully!")
except Exception as lora_error:
print(f"⚠️ LoRA adapter failed to load: {lora_error}")
print("🔄 Falling back to base model...")
model = base_model
else:
# Load merged/fine-tuned model directly
print(f"🔄 Loading merged model: {LORA_MODEL_ID}")
model_kwargs = {
"torch_dtype": "auto",
"device_map": "auto",
"attn_implementation": "kernels-community/vllm-flash-attn3"
}
if MODEL_SUBFOLDER and MODEL_SUBFOLDER.strip():
model = AutoModelForCausalLM.from_pretrained(LORA_MODEL_ID, subfolder=MODEL_SUBFOLDER, **model_kwargs)
tokenizer = AutoTokenizer.from_pretrained(LORA_MODEL_ID, subfolder=MODEL_SUBFOLDER)
else:
model = AutoModelForCausalLM.from_pretrained(LORA_MODEL_ID, **model_kwargs)
tokenizer = AutoTokenizer.from_pretrained(LORA_MODEL_ID)
print("✅ Merged model loaded successfully!")
except Exception as e:
print(f"❌ Error loading model: {e}")
raise e
def format_conversation_history(chat_history):
messages = []
for item in chat_history:
role = item["role"]
content = item["content"]
if isinstance(content, list):
content = content[0]["text"] if content and "text" in content[0] else str(content)
messages.append({"role": role, "content": content})
return messages
def format_analysis_response(text):
"""Enhanced response formatting with better structure and LaTeX support."""
# Look for analysis section followed by final response
m = re.search(r"analysis(.*?)assistantfinal", text, re.DOTALL | re.IGNORECASE)
if m:
reasoning = m.group(1).strip()
response = text.split("assistantfinal", 1)[-1].strip()
# Clean up the reasoning section
reasoning = re.sub(r'^analysis\s*', '', reasoning, flags=re.IGNORECASE).strip()
# Format with improved structure
formatted = (
f"**🤔 Analysis & Reasoning:**\n\n"
f"*{reasoning}*\n\n"
f"---\n\n"
f"**💬 Final Response:**\n\n{response}"
)
# Ensure LaTeX delimiters are balanced
if formatted.count("$") % 2:
formatted += "$"
return formatted
# Fallback: clean up the text and return as-is
cleaned = re.sub(r'^analysis\s*', '', text, flags=re.IGNORECASE).strip()
if cleaned.count("$") % 2:
cleaned += "$"
return cleaned
@spaces.GPU(duration=60)
def generate_response(input_data, chat_history, max_new_tokens, system_prompt, temperature, top_p, top_k, repetition_penalty):
if not input_data.strip():
yield "Please enter a prompt."
return
# Log the request
logging.info(f"[User] {input_data}")
logging.info(f"[System] {system_prompt} | Temp={temperature} | Max tokens={max_new_tokens}")
new_message = {"role": "user", "content": input_data}
system_message = [{"role": "system", "content": system_prompt}] if system_prompt else []
processed_history = format_conversation_history(chat_history)
messages = system_message + processed_history + [new_message]
prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# Create streamer for proper streaming
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
# Prepare generation kwargs
generation_kwargs = {
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
"pad_token_id": tokenizer.eos_token_id,
"streamer": streamer,
"use_cache": True
}
# Tokenize input using the chat template
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
# Start generation in a separate thread
thread = Thread(target=model.generate, kwargs={**inputs, **generation_kwargs})
thread.start()
# Stream the response with enhanced formatting
collected_text = ""
buffer = ""
yielded_once = False
try:
for chunk in streamer:
if not chunk:
continue
collected_text += chunk
buffer += chunk
# Initial yield to show immediate response
if not yielded_once:
yield chunk
buffer = ""
yielded_once = True
continue
# Yield accumulated text periodically for smooth streaming
if "\n" in buffer or len(buffer) > 150:
# Use enhanced formatting for partial text
partial_formatted = format_analysis_response(collected_text)
yield partial_formatted
buffer = ""
# Final formatting with complete text
final_formatted = format_analysis_response(collected_text)
yield final_formatted
except Exception as e:
logging.exception("Generation streaming failed")
yield f"❌ Error during generation: {e}"
demo = gr.ChatInterface(
fn=generate_response,
additional_inputs=[
gr.Slider(label="Max new tokens", minimum=64, maximum=4096, step=1, value=2048),
gr.Textbox(
label="System Prompt",
value="You are a helpful assistant. Reasoning: medium",
lines=4,
placeholder="Change system prompt"
),
gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7),
gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
gr.Slider(label="Top-k", minimum=1, maximum=100, step=1, value=50),
gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.0)
],
examples=[
[{"text": "Explain Newton's laws clearly and concisely with mathematical formulas"}],
[{"text": "Write a Python function to calculate the Fibonacci sequence"}],
[{"text": "What are the benefits of open weight AI models? Include analysis."}],
[{"text": "Solve this equation: $x^2 + 5x + 6 = 0$"}],
],
cache_examples=False,
type="messages",
description=f"""
# 🙋🏻‍♂️Welcome to 🌟{MODEL_NAME} Demo !
**Model**: `{LORA_MODEL_ID}`
**Base**: `{BASE_MODEL_ID}`
✨ **Enhanced Features:**
- 🧠 **Advanced Reasoning**: Detailed analysis and step-by-step thinking
- 📊 **LaTeX Support**: Mathematical formulas rendered beautifully (use `$` or `$$`)
- 🎯 **Improved Formatting**: Clear separation of reasoning and final responses
- 📝 **Smart Logging**: Better error handling and request tracking
💡 **Usage Tips:**
- Adjust reasoning level in system prompt (e.g., "Reasoning: high")
- Use LaTeX for math: `$E = mc^2$` or `$$\\int x^2 dx$$`
- Wait a couple of seconds initially for model loading
""",
fill_height=True,
textbox=gr.Textbox(
label="Query Input",
placeholder="Type your prompt (supports LaTeX: $x^2 + y^2 = z^2$)"
),
stop_btn="Stop Generation",
multimodal=False,
theme=gr.themes.Soft()
)
if __name__ == "__main__":
demo.launch(share=True)