|
|
import os |
|
|
from flask import Flask, request, render_template_string |
|
|
from PIL import Image |
|
|
import torch |
|
|
from torchvision import models, transforms |
|
|
import requests |
|
|
from transformers import pipeline |
|
|
|
|
|
app = Flask(__name__) |
|
|
|
|
|
|
|
|
upload_folder = os.path.join('static', 'uploads') |
|
|
os.makedirs(upload_folder, exist_ok=True) |
|
|
|
|
|
|
|
|
imagenet_class_labels_url = 'https://raw.githubusercontent.com/anishathalye/imagenet-simple-labels/master/imagenet-simple-labels.json' |
|
|
response = requests.get(imagenet_class_labels_url) |
|
|
imagenet_class_labels = response.json() |
|
|
|
|
|
|
|
|
resnet50_model = models.resnet50(weights=models.ResNet50_Weights.DEFAULT) |
|
|
resnet50_model.eval() |
|
|
|
|
|
|
|
|
resnet18_model = models.resnet18(weights=models.ResNet18_Weights.DEFAULT) |
|
|
resnet18_model.eval() |
|
|
|
|
|
|
|
|
news_classifier = pipeline("text-classification", model="mrm8488/bert-tiny-finetuned-fake-news-detection") |
|
|
|
|
|
|
|
|
transform = transforms.Compose([ |
|
|
transforms.Resize((224, 224)), |
|
|
transforms.ToTensor(), |
|
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), |
|
|
]) |
|
|
|
|
|
|
|
|
HTML_TEMPLATE = """ |
|
|
<!DOCTYPE html> |
|
|
<html lang="en"> |
|
|
<head> |
|
|
<meta charset="UTF-8"> |
|
|
<title>AI & News Detection</title> |
|
|
<style> |
|
|
body { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; background-color: #f5f5f5; padding: 20px; } |
|
|
.container { background: white; padding: 30px; border-radius: 12px; max-width: 750px; margin: auto; box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1); } |
|
|
h1, h2 { color: #333; } |
|
|
textarea { width: 100%; padding: 12px; margin-top: 10px; border-radius: 8px; border: 1px solid #ccc; } |
|
|
button { background-color: #4CAF50; color: white; border: none; padding: 12px 20px; border-radius: 8px; cursor: pointer; font-size: 16px; } |
|
|
button:hover { background-color: #45a049; } |
|
|
.result { background: #e7f3fe; padding: 15px; border-radius: 10px; margin-top: 20px; } |
|
|
</style> |
|
|
</head> |
|
|
<body> |
|
|
<div class="container"> |
|
|
<h1>π° Fake News Detection</h1> |
|
|
<form method="POST" action="/detect"> |
|
|
<textarea name="text" placeholder="Enter news text..." required></textarea> |
|
|
<button type="submit">Detect News Authenticity</button> |
|
|
</form> |
|
|
|
|
|
{% if news_prediction %} |
|
|
<div class="result"> |
|
|
<h2>π§ News Detection Result:</h2> |
|
|
<p>{{ news_prediction }}</p> |
|
|
<p><strong>Interpretation:</strong> This result indicates whether the submitted news text is likely real or fake. Higher confidence suggests stronger model certainty.</p> |
|
|
</div> |
|
|
{% endif %} |
|
|
|
|
|
<div style="margin-top: 30px;"> |
|
|
<h2>π€ What is ResNet50?</h2> |
|
|
<p>ResNet50 is a 50-layer deep convolutional neural network designed for image classification tasks. It can recognize thousands of objects from the ImageNet dataset.</p> |
|
|
</div> |
|
|
</div> |
|
|
</body> |
|
|
</html> |
|
|
""" |
|
|
|
|
|
@app.route("/", methods=["GET"]) |
|
|
def home(): |
|
|
return render_template_string(HTML_TEMPLATE) |
|
|
|
|
|
@app.route("/detect", methods=["POST"]) |
|
|
def detect(): |
|
|
text = request.form.get("text") |
|
|
if not text: |
|
|
return render_template_string(HTML_TEMPLATE, news_prediction="No text provided.") |
|
|
|
|
|
|
|
|
result = news_classifier(text)[0] |
|
|
label = "REAL" if result['label'] == "LABEL_1" else "FAKE" |
|
|
confidence = result['score'] * 100 |
|
|
|
|
|
return render_template_string( |
|
|
HTML_TEMPLATE, |
|
|
news_prediction=f"News is {label} (Confidence: {confidence:.2f}%)" |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
app.run(host="0.0.0.0", port=7860) |
|
|
|
|
|
|
|
|
|
|
|
|