Update app.py
Browse files
app.py
CHANGED
|
@@ -256,6 +256,9 @@ def build_synthetic_dataset(universe_user: List[str],
|
|
| 256 |
erp_ann: float,
|
| 257 |
sigma_mkt: float,
|
| 258 |
n_rows: int = SYNTH_ROWS) -> pd.DataFrame:
|
|
|
|
|
|
|
|
|
|
| 259 |
rng = np.random.default_rng(12345)
|
| 260 |
assets = list(universe_user)
|
| 261 |
if len(assets) == 0:
|
|
@@ -370,7 +373,7 @@ def suggest_one_per_band(synth: pd.DataFrame, sigma_mkt: float, universe_user: L
|
|
| 370 |
out[band.lower()] = chosen
|
| 371 |
return out
|
| 372 |
|
| 373 |
-
# -------------- UI helpers
|
| 374 |
def empty_positions_df():
|
| 375 |
return pd.DataFrame(columns=["ticker", "amount_usd", "weight_exposure", "beta"])
|
| 376 |
|
|
@@ -458,18 +461,18 @@ def compute(
|
|
| 458 |
|
| 459 |
symbols = [t for t in df["ticker"].tolist() if t]
|
| 460 |
if len(symbols) == 0:
|
| 461 |
-
hide = gr.update(visible=False)
|
| 462 |
return (
|
| 463 |
None, "Add at least one ticker.", empty_positions_df(), empty_suggestion_df(), None,
|
| 464 |
-
|
|
|
|
| 465 |
)
|
| 466 |
|
| 467 |
symbols = validate_tickers(symbols, years_lookback)
|
| 468 |
if len(symbols) == 0:
|
| 469 |
-
hide = gr.update(visible=False)
|
| 470 |
return (
|
| 471 |
None, "Could not validate any tickers.", empty_positions_df(), empty_suggestion_df(), None,
|
| 472 |
-
|
|
|
|
| 473 |
)
|
| 474 |
|
| 475 |
global UNIVERSE
|
|
@@ -486,10 +489,10 @@ def compute(
|
|
| 486 |
# Weights
|
| 487 |
gross = sum(abs(v) for v in amounts.values())
|
| 488 |
if gross <= 1e-12:
|
| 489 |
-
hide = gr.update(visible=False)
|
| 490 |
return (
|
| 491 |
None, "All amounts are zero.", empty_positions_df(), empty_suggestion_df(), None,
|
| 492 |
-
|
|
|
|
| 493 |
)
|
| 494 |
weights = {k: v / gross for k, v in amounts.items()}
|
| 495 |
|
|
@@ -500,7 +503,7 @@ def compute(
|
|
| 500 |
a_sigma, b_sigma, mu_eff_same_sigma = efficient_same_sigma(sigma_hist, rf_ann, erp_ann, sigma_mkt)
|
| 501 |
a_mu, b_mu, sigma_eff_same_mu = efficient_same_return(mu_capm, rf_ann, erp_ann, sigma_mkt)
|
| 502 |
|
| 503 |
-
# Synthetic dataset & suggestions
|
| 504 |
user_universe = list(symbols)
|
| 505 |
synth = build_synthetic_dataset(user_universe, covA, betas, rf_ann, erp_ann, sigma_mkt, n_rows=SYNTH_ROWS)
|
| 506 |
csv_path = os.path.join(DATA_DIR, f"investor_profiles_{int(time.time())}.csv")
|
|
@@ -529,6 +532,7 @@ def compute(
|
|
| 529 |
else:
|
| 530 |
chosen_sigma = float(chosen["sigma_hist"])
|
| 531 |
chosen_mu = float(chosen["mu_capm"])
|
|
|
|
| 532 |
sugg_table = _holdings_table_from_row(chosen, budget=gross)
|
| 533 |
|
| 534 |
pos_table = pd.DataFrame(
|
|
@@ -548,6 +552,7 @@ def compute(
|
|
| 548 |
sugg_sigma_hist=chosen_sigma, sugg_mu_capm=chosen_mu
|
| 549 |
)
|
| 550 |
|
|
|
|
| 551 |
info = "\n".join([
|
| 552 |
"### Inputs",
|
| 553 |
f"- Lookback years {years_lookback}",
|
|
@@ -564,18 +569,17 @@ def compute(
|
|
| 564 |
f"- **Same σ as your portfolio** → Market weight **{a_sigma:.2f}**, Bills weight **{b_sigma:.2f}** → E[r] **{mu_eff_same_sigma:.2%}**",
|
| 565 |
f"- **Same E[r] as your portfolio** → Market weight **{a_mu:.2f}**, Bills weight **{b_mu:.2f}** → σ **{sigma_eff_same_mu:.2%}**",
|
| 566 |
"",
|
| 567 |
-
"_How to replicate:_ use a broad market ETF (e.g., VOO) for **Market** and a T-bill/
|
| 568 |
-
"Weights
|
|
|
|
| 569 |
])
|
|
|
|
| 570 |
|
| 571 |
-
show = gr.update(visible=True)
|
| 572 |
return (
|
| 573 |
img, info, pos_table, sugg_table, csv_path,
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
gr.update(value=txt_high, visible=True),
|
| 578 |
-
gr.update(visible=True), gr.update(visible=True), gr.update(visible=True) # buttons visible
|
| 579 |
)
|
| 580 |
|
| 581 |
# -------------- UI --------------
|
|
@@ -586,93 +590,111 @@ with gr.Blocks(title="Efficient Portfolio Advisor") as demo:
|
|
| 586 |
"Plot shows **your CAPM point on the CML** plus efficient market/bills points."
|
| 587 |
)
|
| 588 |
|
| 589 |
-
|
| 590 |
-
|
| 591 |
-
|
| 592 |
-
|
| 593 |
-
|
| 594 |
-
|
| 595 |
-
|
| 596 |
-
|
| 597 |
-
|
| 598 |
-
|
| 599 |
-
|
| 600 |
-
|
| 601 |
-
|
| 602 |
-
|
| 603 |
-
|
| 604 |
-
|
| 605 |
-
|
| 606 |
|
| 607 |
-
|
| 608 |
-
|
| 609 |
-
|
| 610 |
-
|
| 611 |
-
|
| 612 |
-
|
| 613 |
-
|
| 614 |
-
|
| 615 |
-
|
| 616 |
-
|
| 617 |
-
|
| 618 |
-
|
| 619 |
-
|
| 620 |
-
|
| 621 |
-
|
| 622 |
-
|
| 623 |
-
|
| 624 |
-
label="
|
| 625 |
-
|
| 626 |
-
|
| 627 |
-
|
| 628 |
-
|
| 629 |
-
|
| 630 |
-
|
| 631 |
-
|
| 632 |
-
|
| 633 |
-
|
| 634 |
-
|
| 635 |
-
|
| 636 |
-
|
| 637 |
-
|
| 638 |
-
|
| 639 |
-
|
| 640 |
-
|
| 641 |
-
|
| 642 |
-
|
| 643 |
-
|
|
|
|
| 644 |
search_btn.click(fn=search_tickers_cb, inputs=q, outputs=[search_note, matches])
|
| 645 |
-
add_btn.click(fn=add_symbol,
|
| 646 |
-
table.change(fn=lock_ticker_column,
|
| 647 |
|
|
|
|
| 648 |
horizon.change(fn=set_horizon, inputs=horizon, outputs=[])
|
| 649 |
|
| 650 |
-
# compute (default Medium band)
|
| 651 |
run_btn.click(
|
| 652 |
fn=compute,
|
| 653 |
inputs=[lookback, table, gr.State("Medium")],
|
| 654 |
outputs=[
|
| 655 |
plot, summary, positions, sugg_table, dl,
|
| 656 |
-
|
| 657 |
-
|
|
|
|
| 658 |
]
|
| 659 |
)
|
| 660 |
|
| 661 |
-
# band buttons
|
| 662 |
btn_low.click(
|
| 663 |
fn=compute,
|
| 664 |
inputs=[lookback, table, gr.State("Low")],
|
| 665 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 666 |
)
|
| 667 |
btn_med.click(
|
| 668 |
fn=compute,
|
| 669 |
inputs=[lookback, table, gr.State("Medium")],
|
| 670 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 671 |
)
|
| 672 |
btn_high.click(
|
| 673 |
fn=compute,
|
| 674 |
inputs=[lookback, table, gr.State("High")],
|
| 675 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 676 |
)
|
| 677 |
|
| 678 |
# initialize risk-free at launch
|
|
|
|
| 256 |
erp_ann: float,
|
| 257 |
sigma_mkt: float,
|
| 258 |
n_rows: int = SYNTH_ROWS) -> pd.DataFrame:
|
| 259 |
+
"""
|
| 260 |
+
Generate long-only mixes **from exactly the user's tickers** (VOO included only if the user holds it).
|
| 261 |
+
"""
|
| 262 |
rng = np.random.default_rng(12345)
|
| 263 |
assets = list(universe_user)
|
| 264 |
if len(assets) == 0:
|
|
|
|
| 373 |
out[band.lower()] = chosen
|
| 374 |
return out
|
| 375 |
|
| 376 |
+
# -------------- UI helpers --------------
|
| 377 |
def empty_positions_df():
|
| 378 |
return pd.DataFrame(columns=["ticker", "amount_usd", "weight_exposure", "beta"])
|
| 379 |
|
|
|
|
| 461 |
|
| 462 |
symbols = [t for t in df["ticker"].tolist() if t]
|
| 463 |
if len(symbols) == 0:
|
|
|
|
| 464 |
return (
|
| 465 |
None, "Add at least one ticker.", empty_positions_df(), empty_suggestion_df(), None,
|
| 466 |
+
"", "", "",
|
| 467 |
+
None, None, None, None, None, None, None, None, None
|
| 468 |
)
|
| 469 |
|
| 470 |
symbols = validate_tickers(symbols, years_lookback)
|
| 471 |
if len(symbols) == 0:
|
|
|
|
| 472 |
return (
|
| 473 |
None, "Could not validate any tickers.", empty_positions_df(), empty_suggestion_df(), None,
|
| 474 |
+
"", "", "",
|
| 475 |
+
None, None, None, None, None, None, None, None, None
|
| 476 |
)
|
| 477 |
|
| 478 |
global UNIVERSE
|
|
|
|
| 489 |
# Weights
|
| 490 |
gross = sum(abs(v) for v in amounts.values())
|
| 491 |
if gross <= 1e-12:
|
|
|
|
| 492 |
return (
|
| 493 |
None, "All amounts are zero.", empty_positions_df(), empty_suggestion_df(), None,
|
| 494 |
+
"", "", "",
|
| 495 |
+
rf_ann, erp_ann, sigma_mkt, None, None, None, None, None, None
|
| 496 |
)
|
| 497 |
weights = {k: v / gross for k, v in amounts.items()}
|
| 498 |
|
|
|
|
| 503 |
a_sigma, b_sigma, mu_eff_same_sigma = efficient_same_sigma(sigma_hist, rf_ann, erp_ann, sigma_mkt)
|
| 504 |
a_mu, b_mu, sigma_eff_same_mu = efficient_same_return(mu_capm, rf_ann, erp_ann, sigma_mkt)
|
| 505 |
|
| 506 |
+
# Synthetic dataset & suggestions — exactly the user's tickers
|
| 507 |
user_universe = list(symbols)
|
| 508 |
synth = build_synthetic_dataset(user_universe, covA, betas, rf_ann, erp_ann, sigma_mkt, n_rows=SYNTH_ROWS)
|
| 509 |
csv_path = os.path.join(DATA_DIR, f"investor_profiles_{int(time.time())}.csv")
|
|
|
|
| 532 |
else:
|
| 533 |
chosen_sigma = float(chosen["sigma_hist"])
|
| 534 |
chosen_mu = float(chosen["mu_capm"])
|
| 535 |
+
# holdings table from chosen suggestion
|
| 536 |
sugg_table = _holdings_table_from_row(chosen, budget=gross)
|
| 537 |
|
| 538 |
pos_table = pd.DataFrame(
|
|
|
|
| 552 |
sugg_sigma_hist=chosen_sigma, sugg_mu_capm=chosen_mu
|
| 553 |
)
|
| 554 |
|
| 555 |
+
# ---------- summary text ----------
|
| 556 |
info = "\n".join([
|
| 557 |
"### Inputs",
|
| 558 |
f"- Lookback years {years_lookback}",
|
|
|
|
| 569 |
f"- **Same σ as your portfolio** → Market weight **{a_sigma:.2f}**, Bills weight **{b_sigma:.2f}** → E[r] **{mu_eff_same_sigma:.2%}**",
|
| 570 |
f"- **Same E[r] as your portfolio** → Market weight **{a_mu:.2f}**, Bills weight **{b_mu:.2f}** → σ **{sigma_eff_same_mu:.2%}**",
|
| 571 |
"",
|
| 572 |
+
"_How to replicate:_ use a broad market ETF (e.g., VOO) for the **Market** leg and a T-bill/money-market fund for **Bills**. ",
|
| 573 |
+
"Weights can be >1 or negative (e.g., Market > 1 and Bills < 0 implies leverage/borrowing). ",
|
| 574 |
+
"If leverage isn’t allowed, scale both weights proportionally toward 1.0 to fit your constraints.",
|
| 575 |
])
|
| 576 |
+
# -----------------------------------
|
| 577 |
|
|
|
|
| 578 |
return (
|
| 579 |
img, info, pos_table, sugg_table, csv_path,
|
| 580 |
+
txt_low, txt_med, txt_high,
|
| 581 |
+
rf_ann, erp_ann, sigma_mkt, sigma_hist, mu_capm, mu_eff_same_sigma, sigma_eff_same_mu,
|
| 582 |
+
chosen_sigma, chosen_mu
|
|
|
|
|
|
|
| 583 |
)
|
| 584 |
|
| 585 |
# -------------- UI --------------
|
|
|
|
| 590 |
"Plot shows **your CAPM point on the CML** plus efficient market/bills points."
|
| 591 |
)
|
| 592 |
|
| 593 |
+
with gr.Row():
|
| 594 |
+
with gr.Column(scale=1):
|
| 595 |
+
# --- Vertical flow: Search -> Button -> Matches -> Add ---
|
| 596 |
+
q = gr.Textbox(label="Search symbol")
|
| 597 |
+
search_btn = gr.Button("Search")
|
| 598 |
+
search_note = gr.Markdown()
|
| 599 |
+
matches = gr.Dropdown(choices=[], label="Matches")
|
| 600 |
+
add_btn = gr.Button("Add selected to portfolio")
|
| 601 |
+
# ----------------------------------------------------------
|
| 602 |
+
|
| 603 |
+
gr.Markdown("### Portfolio positions")
|
| 604 |
+
table = gr.Dataframe(
|
| 605 |
+
headers=["ticker", "amount_usd"],
|
| 606 |
+
datatype=["str", "number"],
|
| 607 |
+
row_count=0,
|
| 608 |
+
col_count=(2, "fixed")
|
| 609 |
+
)
|
| 610 |
|
| 611 |
+
horizon = gr.Number(label="Horizon in years (1–100)", value=HORIZON_YEARS, precision=0)
|
| 612 |
+
lookback = gr.Slider(1, 15, value=DEFAULT_LOOKBACK_YEARS, step=1, label="Lookback years for betas & covariances")
|
| 613 |
+
|
| 614 |
+
# --- Compute button directly under lookback slider ---
|
| 615 |
+
run_btn = gr.Button("Compute (build dataset & suggest)")
|
| 616 |
+
# -----------------------------------------------------
|
| 617 |
+
|
| 618 |
+
gr.Markdown("### Suggestions")
|
| 619 |
+
with gr.Row():
|
| 620 |
+
btn_low = gr.Button("Show Low")
|
| 621 |
+
btn_med = gr.Button("Show Medium")
|
| 622 |
+
btn_high = gr.Button("Show High")
|
| 623 |
+
low_txt = gr.Markdown()
|
| 624 |
+
med_txt = gr.Markdown()
|
| 625 |
+
high_txt = gr.Markdown()
|
| 626 |
+
|
| 627 |
+
with gr.Column(scale=1):
|
| 628 |
+
plot = gr.Image(label="Capital Market Line (CAPM)", type="pil")
|
| 629 |
+
summary = gr.Markdown(label="Inputs & Results")
|
| 630 |
+
positions = gr.Dataframe(
|
| 631 |
+
label="Computed positions",
|
| 632 |
+
headers=["ticker", "amount_usd", "weight_exposure", "beta"],
|
| 633 |
+
datatype=["str", "number", "number", "number"],
|
| 634 |
+
col_count=(4, "fixed"),
|
| 635 |
+
value=empty_positions_df(),
|
| 636 |
+
interactive=False
|
| 637 |
+
)
|
| 638 |
+
sugg_table = gr.Dataframe(
|
| 639 |
+
label="Selected suggestion holdings (% / $)",
|
| 640 |
+
headers=["ticker", "weight_%", "amount_$"],
|
| 641 |
+
datatype=["str", "number", "number"],
|
| 642 |
+
col_count=(3, "fixed"),
|
| 643 |
+
value=empty_suggestion_df(),
|
| 644 |
+
interactive=False
|
| 645 |
+
)
|
| 646 |
+
dl = gr.File(label="Generated dataset CSV", value=None, visible=True)
|
| 647 |
+
|
| 648 |
+
# wire search / add / locking
|
| 649 |
search_btn.click(fn=search_tickers_cb, inputs=q, outputs=[search_note, matches])
|
| 650 |
+
add_btn.click(fn=add_symbol, inputs=[matches, table], outputs=[table, search_note])
|
| 651 |
+
table.change(fn=lock_ticker_column, inputs=table, outputs=table)
|
| 652 |
|
| 653 |
+
# horizon updates globals silently (no UI output)
|
| 654 |
horizon.change(fn=set_horizon, inputs=horizon, outputs=[])
|
| 655 |
|
| 656 |
+
# compute + render (default to Medium band)
|
| 657 |
run_btn.click(
|
| 658 |
fn=compute,
|
| 659 |
inputs=[lookback, table, gr.State("Medium")],
|
| 660 |
outputs=[
|
| 661 |
plot, summary, positions, sugg_table, dl,
|
| 662 |
+
low_txt, med_txt, high_txt,
|
| 663 |
+
gr.State(), gr.State(), gr.State(), gr.State(), gr.State(), gr.State(), gr.State(),
|
| 664 |
+
gr.State(), gr.State()
|
| 665 |
]
|
| 666 |
)
|
| 667 |
|
| 668 |
+
# band buttons recompute picks quickly
|
| 669 |
btn_low.click(
|
| 670 |
fn=compute,
|
| 671 |
inputs=[lookback, table, gr.State("Low")],
|
| 672 |
+
outputs=[
|
| 673 |
+
plot, summary, positions, sugg_table, dl,
|
| 674 |
+
low_txt, med_txt, high_txt,
|
| 675 |
+
gr.State(), gr.State(), gr.State(), gr.State(), gr.State(), gr.State(), gr.State(),
|
| 676 |
+
gr.State(), gr.State()
|
| 677 |
+
]
|
| 678 |
)
|
| 679 |
btn_med.click(
|
| 680 |
fn=compute,
|
| 681 |
inputs=[lookback, table, gr.State("Medium")],
|
| 682 |
+
outputs=[
|
| 683 |
+
plot, summary, positions, sugg_table, dl,
|
| 684 |
+
low_txt, med_txt, high_txt,
|
| 685 |
+
gr.State(), gr.State(), gr.State(), gr.State(), gr.State(), gr.State(), gr.State(),
|
| 686 |
+
gr.State(), gr.State()
|
| 687 |
+
]
|
| 688 |
)
|
| 689 |
btn_high.click(
|
| 690 |
fn=compute,
|
| 691 |
inputs=[lookback, table, gr.State("High")],
|
| 692 |
+
outputs=[
|
| 693 |
+
plot, summary, positions, sugg_table, dl,
|
| 694 |
+
low_txt, med_txt, high_txt,
|
| 695 |
+
gr.State(), gr.State(), gr.State(), gr.State(), gr.State(), gr.State(), gr.State(),
|
| 696 |
+
gr.State(), gr.State()
|
| 697 |
+
]
|
| 698 |
)
|
| 699 |
|
| 700 |
# initialize risk-free at launch
|