Update app.py
Browse files
app.py
CHANGED
|
@@ -12,7 +12,7 @@ import requests
|
|
| 12 |
import yfinance as yf
|
| 13 |
import gradio as gr
|
| 14 |
|
| 15 |
-
# ---- runtime niceties
|
| 16 |
os.environ.setdefault("MPLCONFIGDIR", os.getenv("MPLCONFIGDIR", "/home/user/.config/matplotlib"))
|
| 17 |
os.makedirs(os.environ["MPLCONFIGDIR"], exist_ok=True)
|
| 18 |
for d in [
|
|
@@ -123,7 +123,7 @@ def validate_tickers(symbols: List[str], years: int) -> List[str]:
|
|
| 123 |
base = [s for s in dict.fromkeys([t.upper().strip() for t in symbols]) if s]
|
| 124 |
px = fetch_prices_monthly(base + [MARKET_TICKER], years)
|
| 125 |
ok = [s for s in base if s in px.columns]
|
| 126 |
-
#
|
| 127 |
if MARKET_TICKER not in px.columns:
|
| 128 |
return []
|
| 129 |
return ok
|
|
@@ -163,9 +163,10 @@ def estimate_all_moments_aligned(symbols: List[str], years: int, rf_ann: float):
|
|
| 163 |
betas[s] = cov_sm / var_m
|
| 164 |
betas[MARKET_TICKER] = 1.0
|
| 165 |
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
|
|
|
| 169 |
|
| 170 |
return {"betas": betas, "cov_ann": covA, "erp_ann": erp_ann, "sigma_m_ann": sigma_m_ann}
|
| 171 |
|
|
@@ -190,7 +191,6 @@ def portfolio_stats(weights: Dict[str, float],
|
|
| 190 |
return beta_p, mu_capm, sigma_hist
|
| 191 |
|
| 192 |
def efficient_same_sigma(sigma_target: float, rf_ann: float, erp_ann: float, sigma_mkt: float):
|
| 193 |
-
# weights on (Market, Bills) that achieve same sigma as target, on the CML
|
| 194 |
if sigma_mkt <= 1e-12:
|
| 195 |
return 0.0, 1.0, rf_ann
|
| 196 |
a = sigma_target / sigma_mkt
|
|
@@ -222,16 +222,16 @@ def plot_cml(rf_ann, erp_ann, sigma_mkt,
|
|
| 222 |
plt.scatter([_pct(0)], [_pct(rf_ann)], label="Risk-free")
|
| 223 |
plt.scatter([_pct(sigma_mkt)], [_pct(rf_ann + erp_ann)], label="Market")
|
| 224 |
|
| 225 |
-
# Your CAPM point
|
| 226 |
y_cml_at_sigma_p = rf_ann + slope * max(0.0, float(sigma_hist_p))
|
| 227 |
y_you = min(float(mu_capm_p), y_cml_at_sigma_p)
|
| 228 |
plt.scatter([_pct(sigma_hist_p)], [_pct(y_you)], label="Your CAPM point")
|
| 229 |
|
| 230 |
-
# Efficient points (on
|
| 231 |
plt.scatter([_pct(sigma_hist_p)], [_pct(same_sigma_mu)], marker="^", label="Efficient (same σ)")
|
| 232 |
plt.scatter([_pct(same_mu_sigma)], [_pct(mu_capm_p)], marker="^", label="Efficient (same E[r])")
|
| 233 |
|
| 234 |
-
# Selected suggestion
|
| 235 |
if sugg_sigma_hist is not None and sugg_mu_capm is not None:
|
| 236 |
y_cml_at_sugg = rf_ann + slope * max(0.0, float(sugg_sigma_hist))
|
| 237 |
y_sugg = min(float(sugg_mu_capm), y_cml_at_sugg)
|
|
@@ -257,13 +257,10 @@ def build_synthetic_dataset(universe_user: List[str],
|
|
| 257 |
sigma_mkt: float,
|
| 258 |
n_rows: int = SYNTH_ROWS) -> pd.DataFrame:
|
| 259 |
"""
|
| 260 |
-
Generate long-only mixes **
|
| 261 |
-
but we still use VOO internally for betas/ERP and the CML geometry.
|
| 262 |
"""
|
| 263 |
rng = np.random.default_rng(12345)
|
| 264 |
-
assets =
|
| 265 |
-
if not assets:
|
| 266 |
-
assets = universe_user[:] # could be empty; handled below
|
| 267 |
if len(assets) == 0:
|
| 268 |
return pd.DataFrame(columns=["tickers", "weights", "beta", "mu_capm", "sigma_hist"])
|
| 269 |
|
|
@@ -310,18 +307,12 @@ def rerank_and_pick_one(df_band: pd.DataFrame,
|
|
| 310 |
universe: List[str],
|
| 311 |
desired_band: str,
|
| 312 |
alpha: float = 0.6) -> pd.Series:
|
| 313 |
-
"""
|
| 314 |
-
Re-rank with embeddings + exposure similarity + simple MMR,
|
| 315 |
-
then return **one** best pick (row).
|
| 316 |
-
"""
|
| 317 |
if df_band.empty:
|
| 318 |
return pd.Series(dtype=object)
|
| 319 |
|
| 320 |
-
# exposure target = equal-weight over the user's universe
|
| 321 |
exp_target = np.ones(len(universe))
|
| 322 |
exp_target = exp_target / np.sum(exp_target)
|
| 323 |
|
| 324 |
-
# embeddings
|
| 325 |
embs_ok = True
|
| 326 |
try:
|
| 327 |
from sentence_transformers import SentenceTransformer
|
|
@@ -332,19 +323,18 @@ def rerank_and_pick_one(df_band: pd.DataFrame,
|
|
| 332 |
"high": "high risk growth aggressive portfolio higher expected return",
|
| 333 |
}
|
| 334 |
prompt = prompt_map.get(desired_band.lower(), prompt_map["medium"])
|
| 335 |
-
q = model.encode([prompt])
|
| 336 |
except Exception:
|
| 337 |
embs_ok = False
|
| 338 |
q = None
|
| 339 |
|
| 340 |
-
#
|
| 341 |
-
scores = []
|
| 342 |
-
X_exp = np.stack([_exposure_vec(r, universe) for _, r in df_band.iterrows()], axis=0)
|
| 343 |
-
# cosine exposure similarity to target
|
| 344 |
def _cos(a, b):
|
| 345 |
an = np.linalg.norm(a) + 1e-12
|
| 346 |
bn = np.linalg.norm(b) + 1e-12
|
| 347 |
return float(np.dot(a, b) / (an * bn))
|
|
|
|
|
|
|
| 348 |
exp_sims = np.array([_cos(x, exp_target) for x in X_exp])
|
| 349 |
|
| 350 |
if embs_ok:
|
|
@@ -354,7 +344,7 @@ def rerank_and_pick_one(df_band: pd.DataFrame,
|
|
| 354 |
f"portfolio with tickers {r['tickers']} having beta {float(r['beta']):.2f}, "
|
| 355 |
f"expected return {float(r['mu_capm']):.3f}, sigma {float(r['sigma_hist']):.3f}"
|
| 356 |
)
|
| 357 |
-
C = model.encode(cand_texts)
|
| 358 |
qv = q.reshape(-1)
|
| 359 |
coss = (C @ qv) / (np.linalg.norm(C, axis=1) * (np.linalg.norm(qv) + 1e-12))
|
| 360 |
coss = np.nan_to_num(coss, nan=0.0)
|
|
@@ -362,8 +352,6 @@ def rerank_and_pick_one(df_band: pd.DataFrame,
|
|
| 362 |
coss = np.zeros(len(df_band))
|
| 363 |
|
| 364 |
base = alpha * exp_sims + (1 - alpha) * coss
|
| 365 |
-
|
| 366 |
-
# simple MMR (λ = 0.7) for diversity; since we want top1, this is just argmax
|
| 367 |
order = np.argsort(-base)
|
| 368 |
best_idx = int(order[0])
|
| 369 |
return df_band.iloc[best_idx]
|
|
@@ -375,7 +363,6 @@ def suggest_one_per_band(synth: pd.DataFrame, sigma_mkt: float, universe_user: L
|
|
| 375 |
pick_pool = synth[(synth["sigma_hist"] >= lo) & (synth["sigma_hist"] <= hi)].copy()
|
| 376 |
if pick_pool.empty:
|
| 377 |
pick_pool = synth.copy()
|
| 378 |
-
# sort by CAPM E[r] first to bias pool, then rerank+MMR and return **one**
|
| 379 |
pick_pool = pick_pool.sort_values("mu_capm", ascending=False).head(50).reset_index(drop=True)
|
| 380 |
chosen = rerank_and_pick_one(pick_pool, universe_user, band)
|
| 381 |
out[band.lower()] = chosen
|
|
@@ -479,7 +466,7 @@ def compute(
|
|
| 479 |
"", "", "", None, None, None, None, None, None, None
|
| 480 |
|
| 481 |
global UNIVERSE
|
| 482 |
-
UNIVERSE = list(sorted(set(
|
| 483 |
|
| 484 |
df = df[df["ticker"].isin(symbols)].copy()
|
| 485 |
amounts = {r["ticker"]: float(r["amount_usd"]) for _, r in df.iterrows()}
|
|
@@ -503,18 +490,17 @@ def compute(
|
|
| 503 |
a_sigma, b_sigma, mu_eff_same_sigma = efficient_same_sigma(sigma_hist, rf_ann, erp_ann, sigma_mkt)
|
| 504 |
a_mu, b_mu, sigma_eff_same_mu = efficient_same_return(mu_capm, rf_ann, erp_ann, sigma_mkt)
|
| 505 |
|
| 506 |
-
# Synthetic dataset & suggestions
|
| 507 |
-
|
| 508 |
-
synth = build_synthetic_dataset(
|
| 509 |
csv_path = os.path.join(DATA_DIR, f"investor_profiles_{int(time.time())}.csv")
|
| 510 |
try:
|
| 511 |
synth.to_csv(csv_path, index=False)
|
| 512 |
except Exception:
|
| 513 |
csv_path = None
|
| 514 |
|
| 515 |
-
picks = suggest_one_per_band(synth, sigma_mkt,
|
| 516 |
|
| 517 |
-
# Build visible summaries
|
| 518 |
def _fmt(row: pd.Series) -> str:
|
| 519 |
if row is None or row.empty:
|
| 520 |
return "No pick available."
|
|
@@ -524,7 +510,6 @@ def compute(
|
|
| 524 |
txt_med = _fmt(picks.get("medium", pd.Series(dtype=object)))
|
| 525 |
txt_high = _fmt(picks.get("high", pd.Series(dtype=object)))
|
| 526 |
|
| 527 |
-
# Choose which pick to display on the plot now
|
| 528 |
chosen_band = (pick_band_to_show or "Medium").strip().lower()
|
| 529 |
chosen = picks.get(chosen_band, pd.Series(dtype=object))
|
| 530 |
if chosen is None or chosen.empty:
|
|
@@ -536,7 +521,6 @@ def compute(
|
|
| 536 |
chosen_mu = float(chosen["mu_capm"])
|
| 537 |
sugg_table = _holdings_table_from_row(chosen, budget=gross)
|
| 538 |
|
| 539 |
-
# positions table
|
| 540 |
pos_table = pd.DataFrame(
|
| 541 |
[{
|
| 542 |
"ticker": t,
|
|
@@ -547,7 +531,6 @@ def compute(
|
|
| 547 |
columns=["ticker", "amount_usd", "weight_exposure", "beta"]
|
| 548 |
)
|
| 549 |
|
| 550 |
-
# plot
|
| 551 |
img = plot_cml(
|
| 552 |
rf_ann, erp_ann, sigma_mkt,
|
| 553 |
sigma_hist, mu_capm,
|
|
@@ -575,7 +558,6 @@ def compute(
|
|
| 575 |
])
|
| 576 |
|
| 577 |
uni_msg = f"Universe set to: {', '.join(UNIVERSE)}"
|
| 578 |
-
# Return also the scalars needed for re-plotting on band button clicks
|
| 579 |
return (
|
| 580 |
img, info, uni_msg, pos_table, sugg_table, csv_path,
|
| 581 |
txt_low, txt_med, txt_high,
|
|
@@ -583,45 +565,6 @@ def compute(
|
|
| 583 |
chosen_sigma, chosen_mu
|
| 584 |
)
|
| 585 |
|
| 586 |
-
def redraw_with_band(
|
| 587 |
-
band: str,
|
| 588 |
-
low_txt: str, med_txt: str, high_txt: str, # just to keep signature consistent; not used
|
| 589 |
-
rf_ann: float, erp_ann: float, sigma_mkt: float,
|
| 590 |
-
sigma_hist: float, mu_capm: float,
|
| 591 |
-
same_sigma_mu: float, same_mu_sigma: float,
|
| 592 |
-
synth_csv_path: str, # not used; placeholder to keep wiring simple
|
| 593 |
-
# For building the selected df, we'll pass the three pick JSONs:
|
| 594 |
-
low_pick_json: str, med_pick_json: str, high_pick_json: str
|
| 595 |
-
):
|
| 596 |
-
pick_map = {
|
| 597 |
-
"low": json.loads(low_pick_json) if low_pick_json else None,
|
| 598 |
-
"medium": json.loads(med_pick_json) if med_pick_json else None,
|
| 599 |
-
"high": json.loads(high_pick_json) if high_pick_json else None,
|
| 600 |
-
}
|
| 601 |
-
chosen = pick_map.get((band or "medium").lower(), None)
|
| 602 |
-
if not chosen:
|
| 603 |
-
return gr.update(), empty_suggestion_df()
|
| 604 |
-
|
| 605 |
-
chosen_sigma = float(chosen["sigma_hist"])
|
| 606 |
-
chosen_mu = float(chosen["mu_capm"])
|
| 607 |
-
ts = [t.strip() for t in str(chosen["tickers"]).split(",") if t.strip()]
|
| 608 |
-
ws = [float(x) for x in str(chosen["weights"]).split(",")]
|
| 609 |
-
s = sum(ws) or 1.0
|
| 610 |
-
ws = [max(0.0, w) / s for w in ws]
|
| 611 |
-
budget = float(chosen.get("budget", 1.0))
|
| 612 |
-
sugg_table = pd.DataFrame(
|
| 613 |
-
[{"ticker": t, "weight_%": round(w*100.0, 2), "amount_$": round(w*budget, 0)} for t, w in zip(ts, ws)],
|
| 614 |
-
columns=["ticker", "weight_%", "amount_$"]
|
| 615 |
-
)
|
| 616 |
-
|
| 617 |
-
img = plot_cml(
|
| 618 |
-
rf_ann, erp_ann, sigma_mkt,
|
| 619 |
-
sigma_hist, mu_capm,
|
| 620 |
-
same_sigma_mu, same_mu_sigma,
|
| 621 |
-
sugg_sigma_hist=chosen_sigma, sugg_mu_capm=chosen_mu
|
| 622 |
-
)
|
| 623 |
-
return img, sugg_table
|
| 624 |
-
|
| 625 |
# -------------- UI --------------
|
| 626 |
with gr.Blocks(title="Efficient Portfolio Advisor") as demo:
|
| 627 |
gr.Markdown(
|
|
@@ -630,7 +573,6 @@ with gr.Blocks(title="Efficient Portfolio Advisor") as demo:
|
|
| 630 |
"Plot shows **your CAPM point on the CML** plus efficient market/bills points."
|
| 631 |
)
|
| 632 |
|
| 633 |
-
# --- SEARCH & PORTFOLIO INPUTS
|
| 634 |
with gr.Row():
|
| 635 |
with gr.Column(scale=1):
|
| 636 |
q = gr.Textbox(label="Search symbol")
|
|
@@ -683,55 +625,32 @@ with gr.Blocks(title="Efficient Portfolio Advisor") as demo:
|
|
| 683 |
)
|
| 684 |
dl = gr.File(label="Generated dataset CSV", value=None, visible=True)
|
| 685 |
|
| 686 |
-
# Hidden state for re-plotting + picks (serialized)
|
| 687 |
-
st_rf = gr.State()
|
| 688 |
-
st_erp = gr.State()
|
| 689 |
-
st_sig_mkt = gr.State()
|
| 690 |
-
st_sig_p = gr.State()
|
| 691 |
-
st_mu_p = gr.State()
|
| 692 |
-
st_same_sigma_mu = gr.State()
|
| 693 |
-
st_same_mu_sigma = gr.State()
|
| 694 |
-
|
| 695 |
-
st_low_pick = gr.State() # JSON string
|
| 696 |
-
st_med_pick = gr.State()
|
| 697 |
-
st_high_pick = gr.State()
|
| 698 |
-
st_budget = gr.State()
|
| 699 |
-
|
| 700 |
# wire search / add / locking / horizon
|
| 701 |
search_btn.click(fn=search_tickers_cb, inputs=q, outputs=[search_note, matches])
|
| 702 |
add_btn.click(fn=add_symbol, inputs=[matches, table], outputs=[table, search_note])
|
| 703 |
table.change(fn=lock_ticker_column, inputs=table, outputs=table)
|
| 704 |
horizon.change(fn=set_horizon, inputs=horizon, outputs=universe_msg)
|
| 705 |
|
| 706 |
-
#
|
| 707 |
-
def _compute_and_pack(lookback_v, table_v, band_to_show):
|
| 708 |
-
out = compute(lookback_v, table_v, band_to_show)
|
| 709 |
-
# Pack picks as JSON into states so the band buttons can re-draw without recomputing.
|
| 710 |
-
# We need to rebuild the same picks here to store them.
|
| 711 |
-
# To avoid recomputing heavy parts, we approximate by reading the dataset CSV (already saved)
|
| 712 |
-
# but since we returned the three text lines only, we’ll also store chosen pick info directly.
|
| 713 |
-
return out
|
| 714 |
-
|
| 715 |
run_btn.click(
|
| 716 |
-
fn=
|
| 717 |
inputs=[lookback, table, gr.State("Medium")],
|
| 718 |
outputs=[
|
| 719 |
plot, summary, universe_msg, positions, sugg_table, dl,
|
| 720 |
low_txt, med_txt, high_txt,
|
| 721 |
-
|
| 722 |
-
gr.State(), gr.State()
|
| 723 |
]
|
| 724 |
)
|
| 725 |
|
| 726 |
-
#
|
| 727 |
-
# but for responsiveness, we’ll call compute again with the requested band.
|
| 728 |
btn_low.click(
|
| 729 |
fn=compute,
|
| 730 |
inputs=[lookback, table, gr.State("Low")],
|
| 731 |
outputs=[
|
| 732 |
plot, summary, universe_msg, positions, sugg_table, dl,
|
| 733 |
low_txt, med_txt, high_txt,
|
| 734 |
-
|
| 735 |
gr.State(), gr.State()
|
| 736 |
]
|
| 737 |
)
|
|
@@ -741,7 +660,7 @@ with gr.Blocks(title="Efficient Portfolio Advisor") as demo:
|
|
| 741 |
outputs=[
|
| 742 |
plot, summary, universe_msg, positions, sugg_table, dl,
|
| 743 |
low_txt, med_txt, high_txt,
|
| 744 |
-
|
| 745 |
gr.State(), gr.State()
|
| 746 |
]
|
| 747 |
)
|
|
@@ -751,7 +670,7 @@ with gr.Blocks(title="Efficient Portfolio Advisor") as demo:
|
|
| 751 |
outputs=[
|
| 752 |
plot, summary, universe_msg, positions, sugg_table, dl,
|
| 753 |
low_txt, med_txt, high_txt,
|
| 754 |
-
|
| 755 |
gr.State(), gr.State()
|
| 756 |
]
|
| 757 |
)
|
|
@@ -761,5 +680,4 @@ RF_CODE = fred_series_for_horizon(HORIZON_YEARS)
|
|
| 761 |
RF_ANN = fetch_fred_yield_annual(RF_CODE)
|
| 762 |
|
| 763 |
if __name__ == "__main__":
|
| 764 |
-
# Gradio 5.x — no concurrency_count in queue(); keep it simple
|
| 765 |
demo.launch(server_name="0.0.0.0", server_port=7860, show_api=False)
|
|
|
|
| 12 |
import yfinance as yf
|
| 13 |
import gradio as gr
|
| 14 |
|
| 15 |
+
# ---- runtime niceties ----
|
| 16 |
os.environ.setdefault("MPLCONFIGDIR", os.getenv("MPLCONFIGDIR", "/home/user/.config/matplotlib"))
|
| 17 |
os.makedirs(os.environ["MPLCONFIGDIR"], exist_ok=True)
|
| 18 |
for d in [
|
|
|
|
| 123 |
base = [s for s in dict.fromkeys([t.upper().strip() for t in symbols]) if s]
|
| 124 |
px = fetch_prices_monthly(base + [MARKET_TICKER], years)
|
| 125 |
ok = [s for s in base if s in px.columns]
|
| 126 |
+
# require market proxy to compute CAPM
|
| 127 |
if MARKET_TICKER not in px.columns:
|
| 128 |
return []
|
| 129 |
return ok
|
|
|
|
| 163 |
betas[s] = cov_sm / var_m
|
| 164 |
betas[MARKET_TICKER] = 1.0
|
| 165 |
|
| 166 |
+
# >>> FIX: include MARKET_TICKER in covariance so σ for portfolios holding VOO is correct
|
| 167 |
+
asset_cols_all = list(R.columns) # includes market
|
| 168 |
+
cov_m_all = np.cov(R[asset_cols_all].values.T, ddof=1) if asset_cols_all else np.zeros((0, 0))
|
| 169 |
+
covA = pd.DataFrame(cov_m_all * 12.0, index=asset_cols_all, columns=asset_cols_all)
|
| 170 |
|
| 171 |
return {"betas": betas, "cov_ann": covA, "erp_ann": erp_ann, "sigma_m_ann": sigma_m_ann}
|
| 172 |
|
|
|
|
| 191 |
return beta_p, mu_capm, sigma_hist
|
| 192 |
|
| 193 |
def efficient_same_sigma(sigma_target: float, rf_ann: float, erp_ann: float, sigma_mkt: float):
|
|
|
|
| 194 |
if sigma_mkt <= 1e-12:
|
| 195 |
return 0.0, 1.0, rf_ann
|
| 196 |
a = sigma_target / sigma_mkt
|
|
|
|
| 222 |
plt.scatter([_pct(0)], [_pct(rf_ann)], label="Risk-free")
|
| 223 |
plt.scatter([_pct(sigma_mkt)], [_pct(rf_ann + erp_ann)], label="Market")
|
| 224 |
|
| 225 |
+
# Your CAPM point (y is clamped under CML at your σ for display)
|
| 226 |
y_cml_at_sigma_p = rf_ann + slope * max(0.0, float(sigma_hist_p))
|
| 227 |
y_you = min(float(mu_capm_p), y_cml_at_sigma_p)
|
| 228 |
plt.scatter([_pct(sigma_hist_p)], [_pct(y_you)], label="Your CAPM point")
|
| 229 |
|
| 230 |
+
# Efficient points (on CML)
|
| 231 |
plt.scatter([_pct(sigma_hist_p)], [_pct(same_sigma_mu)], marker="^", label="Efficient (same σ)")
|
| 232 |
plt.scatter([_pct(same_mu_sigma)], [_pct(mu_capm_p)], marker="^", label="Efficient (same E[r])")
|
| 233 |
|
| 234 |
+
# Selected suggestion
|
| 235 |
if sugg_sigma_hist is not None and sugg_mu_capm is not None:
|
| 236 |
y_cml_at_sugg = rf_ann + slope * max(0.0, float(sugg_sigma_hist))
|
| 237 |
y_sugg = min(float(sugg_mu_capm), y_cml_at_sugg)
|
|
|
|
| 257 |
sigma_mkt: float,
|
| 258 |
n_rows: int = SYNTH_ROWS) -> pd.DataFrame:
|
| 259 |
"""
|
| 260 |
+
Generate long-only mixes **from exactly the user's tickers** (VOO included only if the user holds it).
|
|
|
|
| 261 |
"""
|
| 262 |
rng = np.random.default_rng(12345)
|
| 263 |
+
assets = list(universe_user) # <-- allow VOO if present
|
|
|
|
|
|
|
| 264 |
if len(assets) == 0:
|
| 265 |
return pd.DataFrame(columns=["tickers", "weights", "beta", "mu_capm", "sigma_hist"])
|
| 266 |
|
|
|
|
| 307 |
universe: List[str],
|
| 308 |
desired_band: str,
|
| 309 |
alpha: float = 0.6) -> pd.Series:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 310 |
if df_band.empty:
|
| 311 |
return pd.Series(dtype=object)
|
| 312 |
|
|
|
|
| 313 |
exp_target = np.ones(len(universe))
|
| 314 |
exp_target = exp_target / np.sum(exp_target)
|
| 315 |
|
|
|
|
| 316 |
embs_ok = True
|
| 317 |
try:
|
| 318 |
from sentence_transformers import SentenceTransformer
|
|
|
|
| 323 |
"high": "high risk growth aggressive portfolio higher expected return",
|
| 324 |
}
|
| 325 |
prompt = prompt_map.get(desired_band.lower(), prompt_map["medium"])
|
| 326 |
+
q = model.encode([prompt])
|
| 327 |
except Exception:
|
| 328 |
embs_ok = False
|
| 329 |
q = None
|
| 330 |
|
| 331 |
+
# exposure similarity
|
|
|
|
|
|
|
|
|
|
| 332 |
def _cos(a, b):
|
| 333 |
an = np.linalg.norm(a) + 1e-12
|
| 334 |
bn = np.linalg.norm(b) + 1e-12
|
| 335 |
return float(np.dot(a, b) / (an * bn))
|
| 336 |
+
|
| 337 |
+
X_exp = np.stack([_exposure_vec(r, universe) for _, r in df_band.iterrows()], axis=0)
|
| 338 |
exp_sims = np.array([_cos(x, exp_target) for x in X_exp])
|
| 339 |
|
| 340 |
if embs_ok:
|
|
|
|
| 344 |
f"portfolio with tickers {r['tickers']} having beta {float(r['beta']):.2f}, "
|
| 345 |
f"expected return {float(r['mu_capm']):.3f}, sigma {float(r['sigma_hist']):.3f}"
|
| 346 |
)
|
| 347 |
+
C = model.encode(cand_texts)
|
| 348 |
qv = q.reshape(-1)
|
| 349 |
coss = (C @ qv) / (np.linalg.norm(C, axis=1) * (np.linalg.norm(qv) + 1e-12))
|
| 350 |
coss = np.nan_to_num(coss, nan=0.0)
|
|
|
|
| 352 |
coss = np.zeros(len(df_band))
|
| 353 |
|
| 354 |
base = alpha * exp_sims + (1 - alpha) * coss
|
|
|
|
|
|
|
| 355 |
order = np.argsort(-base)
|
| 356 |
best_idx = int(order[0])
|
| 357 |
return df_band.iloc[best_idx]
|
|
|
|
| 363 |
pick_pool = synth[(synth["sigma_hist"] >= lo) & (synth["sigma_hist"] <= hi)].copy()
|
| 364 |
if pick_pool.empty:
|
| 365 |
pick_pool = synth.copy()
|
|
|
|
| 366 |
pick_pool = pick_pool.sort_values("mu_capm", ascending=False).head(50).reset_index(drop=True)
|
| 367 |
chosen = rerank_and_pick_one(pick_pool, universe_user, band)
|
| 368 |
out[band.lower()] = chosen
|
|
|
|
| 466 |
"", "", "", None, None, None, None, None, None, None
|
| 467 |
|
| 468 |
global UNIVERSE
|
| 469 |
+
UNIVERSE = list(sorted(set(symbols)))[:MAX_TICKERS] # keep market if present
|
| 470 |
|
| 471 |
df = df[df["ticker"].isin(symbols)].copy()
|
| 472 |
amounts = {r["ticker"]: float(r["amount_usd"]) for _, r in df.iterrows()}
|
|
|
|
| 490 |
a_sigma, b_sigma, mu_eff_same_sigma = efficient_same_sigma(sigma_hist, rf_ann, erp_ann, sigma_mkt)
|
| 491 |
a_mu, b_mu, sigma_eff_same_mu = efficient_same_return(mu_capm, rf_ann, erp_ann, sigma_mkt)
|
| 492 |
|
| 493 |
+
# Synthetic dataset & suggestions — exactly the user's tickers
|
| 494 |
+
user_universe = list(symbols)
|
| 495 |
+
synth = build_synthetic_dataset(user_universe, covA, betas, rf_ann, erp_ann, sigma_mkt, n_rows=SYNTH_ROWS)
|
| 496 |
csv_path = os.path.join(DATA_DIR, f"investor_profiles_{int(time.time())}.csv")
|
| 497 |
try:
|
| 498 |
synth.to_csv(csv_path, index=False)
|
| 499 |
except Exception:
|
| 500 |
csv_path = None
|
| 501 |
|
| 502 |
+
picks = suggest_one_per_band(synth, sigma_mkt, user_universe)
|
| 503 |
|
|
|
|
| 504 |
def _fmt(row: pd.Series) -> str:
|
| 505 |
if row is None or row.empty:
|
| 506 |
return "No pick available."
|
|
|
|
| 510 |
txt_med = _fmt(picks.get("medium", pd.Series(dtype=object)))
|
| 511 |
txt_high = _fmt(picks.get("high", pd.Series(dtype=object)))
|
| 512 |
|
|
|
|
| 513 |
chosen_band = (pick_band_to_show or "Medium").strip().lower()
|
| 514 |
chosen = picks.get(chosen_band, pd.Series(dtype=object))
|
| 515 |
if chosen is None or chosen.empty:
|
|
|
|
| 521 |
chosen_mu = float(chosen["mu_capm"])
|
| 522 |
sugg_table = _holdings_table_from_row(chosen, budget=gross)
|
| 523 |
|
|
|
|
| 524 |
pos_table = pd.DataFrame(
|
| 525 |
[{
|
| 526 |
"ticker": t,
|
|
|
|
| 531 |
columns=["ticker", "amount_usd", "weight_exposure", "beta"]
|
| 532 |
)
|
| 533 |
|
|
|
|
| 534 |
img = plot_cml(
|
| 535 |
rf_ann, erp_ann, sigma_mkt,
|
| 536 |
sigma_hist, mu_capm,
|
|
|
|
| 558 |
])
|
| 559 |
|
| 560 |
uni_msg = f"Universe set to: {', '.join(UNIVERSE)}"
|
|
|
|
| 561 |
return (
|
| 562 |
img, info, uni_msg, pos_table, sugg_table, csv_path,
|
| 563 |
txt_low, txt_med, txt_high,
|
|
|
|
| 565 |
chosen_sigma, chosen_mu
|
| 566 |
)
|
| 567 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 568 |
# -------------- UI --------------
|
| 569 |
with gr.Blocks(title="Efficient Portfolio Advisor") as demo:
|
| 570 |
gr.Markdown(
|
|
|
|
| 573 |
"Plot shows **your CAPM point on the CML** plus efficient market/bills points."
|
| 574 |
)
|
| 575 |
|
|
|
|
| 576 |
with gr.Row():
|
| 577 |
with gr.Column(scale=1):
|
| 578 |
q = gr.Textbox(label="Search symbol")
|
|
|
|
| 625 |
)
|
| 626 |
dl = gr.File(label="Generated dataset CSV", value=None, visible=True)
|
| 627 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 628 |
# wire search / add / locking / horizon
|
| 629 |
search_btn.click(fn=search_tickers_cb, inputs=q, outputs=[search_note, matches])
|
| 630 |
add_btn.click(fn=add_symbol, inputs=[matches, table], outputs=[table, search_note])
|
| 631 |
table.change(fn=lock_ticker_column, inputs=table, outputs=table)
|
| 632 |
horizon.change(fn=set_horizon, inputs=horizon, outputs=universe_msg)
|
| 633 |
|
| 634 |
+
# compute + render (default to Medium band)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 635 |
run_btn.click(
|
| 636 |
+
fn=compute,
|
| 637 |
inputs=[lookback, table, gr.State("Medium")],
|
| 638 |
outputs=[
|
| 639 |
plot, summary, universe_msg, positions, sugg_table, dl,
|
| 640 |
low_txt, med_txt, high_txt,
|
| 641 |
+
gr.State(), gr.State(), gr.State(), gr.State(), gr.State(), gr.State(), gr.State(),
|
| 642 |
+
gr.State(), gr.State()
|
| 643 |
]
|
| 644 |
)
|
| 645 |
|
| 646 |
+
# band buttons recompute picks quickly
|
|
|
|
| 647 |
btn_low.click(
|
| 648 |
fn=compute,
|
| 649 |
inputs=[lookback, table, gr.State("Low")],
|
| 650 |
outputs=[
|
| 651 |
plot, summary, universe_msg, positions, sugg_table, dl,
|
| 652 |
low_txt, med_txt, high_txt,
|
| 653 |
+
gr.State(), gr.State(), gr.State(), gr.State(), gr.State(), gr.State(), gr.State(),
|
| 654 |
gr.State(), gr.State()
|
| 655 |
]
|
| 656 |
)
|
|
|
|
| 660 |
outputs=[
|
| 661 |
plot, summary, universe_msg, positions, sugg_table, dl,
|
| 662 |
low_txt, med_txt, high_txt,
|
| 663 |
+
gr.State(), gr.State(), gr.State(), gr.State(), gr.State(), gr.State(), gr.State(),
|
| 664 |
gr.State(), gr.State()
|
| 665 |
]
|
| 666 |
)
|
|
|
|
| 670 |
outputs=[
|
| 671 |
plot, summary, universe_msg, positions, sugg_table, dl,
|
| 672 |
low_txt, med_txt, high_txt,
|
| 673 |
+
gr.State(), gr.State(), gr.State(), gr.State(), gr.State(), gr.State(), gr.State(),
|
| 674 |
gr.State(), gr.State()
|
| 675 |
]
|
| 676 |
)
|
|
|
|
| 680 |
RF_ANN = fetch_fred_yield_annual(RF_CODE)
|
| 681 |
|
| 682 |
if __name__ == "__main__":
|
|
|
|
| 683 |
demo.launch(server_name="0.0.0.0", server_port=7860, show_api=False)
|