Update app.py
Browse files
app.py
CHANGED
|
@@ -1,178 +1,134 @@
|
|
| 1 |
-
|
| 2 |
-
warnings.filterwarnings("ignore")
|
| 3 |
|
| 4 |
-
from typing import List, Tuple, Dict
|
| 5 |
-
import numpy as np
|
| 6 |
import pandas as pd
|
| 7 |
-
import
|
| 8 |
-
import gradio as gr
|
| 9 |
-
from PIL import Image
|
| 10 |
-
import requests
|
| 11 |
import yfinance as yf
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
start = pd.Timestamp.today(tz="UTC") - pd.DateOffset(years=years, days=7)
|
| 50 |
-
end = pd.Timestamp.today(tz="UTC")
|
| 51 |
-
frames = []
|
| 52 |
-
for t in tickers:
|
| 53 |
-
try:
|
| 54 |
-
s = yf.download(
|
| 55 |
-
t, start=start.date(), end=end.date(),
|
| 56 |
-
interval="1mo", auto_adjust=True, progress=False
|
| 57 |
-
)["Close"]
|
| 58 |
-
if isinstance(s, pd.Series) and s.dropna().size > 0:
|
| 59 |
-
frames.append(s.rename(t))
|
| 60 |
-
except Exception:
|
| 61 |
-
pass
|
| 62 |
-
if frames:
|
| 63 |
-
return pd.concat(frames, axis=1).dropna(how="any").fillna(method="ffill")
|
| 64 |
-
return pd.DataFrame()
|
| 65 |
-
|
| 66 |
-
def monthly_returns(prices: pd.DataFrame) -> pd.DataFrame:
|
| 67 |
-
return prices.pct_change().dropna()
|
| 68 |
-
|
| 69 |
-
def annualize_mean(m):
|
| 70 |
-
return np.asarray(m, dtype=float) * 12.0
|
| 71 |
-
|
| 72 |
-
def annualize_sigma(s):
|
| 73 |
-
return np.asarray(s, dtype=float) * math.sqrt(12.0)
|
| 74 |
-
|
| 75 |
-
def estimate_all_moments_aligned(symbols: List[str], years: int, rf_ann: float):
|
| 76 |
-
px = fetch_prices_monthly(symbols, years)
|
| 77 |
-
rets = monthly_returns(px)
|
| 78 |
-
rf_m = rf_ann / 12.0
|
| 79 |
-
mu = rets.mean()
|
| 80 |
-
sigma = rets.std(ddof=1)
|
| 81 |
-
betas = {}
|
| 82 |
-
mkt = rets[MARKET_TICKER]
|
| 83 |
-
var_m = np.var(mkt - rf_m, ddof=1)
|
| 84 |
-
for s in symbols:
|
| 85 |
-
if s == MARKET_TICKER:
|
| 86 |
-
betas[s] = 1.0
|
| 87 |
-
else:
|
| 88 |
-
ex_s = rets[s] - rf_m
|
| 89 |
-
betas[s] = np.cov(ex_s, mkt - rf_m, ddof=1)[0,1] / var_m
|
| 90 |
-
erp = annualize_mean(mu[MARKET_TICKER]) - rf_ann
|
| 91 |
-
sigma_mkt = annualize_sigma(sigma[MARKET_TICKER])
|
| 92 |
-
covA = pd.DataFrame(np.cov(rets.T) * 12.0, index=symbols, columns=symbols)
|
| 93 |
-
return betas, covA, erp, sigma_mkt
|
| 94 |
-
|
| 95 |
-
def capm_er(beta: float, rf_ann: float, erp_ann: float) -> float:
|
| 96 |
-
return float(rf_ann + beta * erp_ann)
|
| 97 |
-
|
| 98 |
-
def portfolio_stats(weights: Dict[str, float], cov_ann: pd.DataFrame,
|
| 99 |
-
betas: Dict[str, float], rf_ann: float, erp_ann: float):
|
| 100 |
-
tickers = list(weights.keys())
|
| 101 |
-
w = np.array(list(weights.values()))
|
| 102 |
-
w_expo = w / sum(abs(w))
|
| 103 |
-
beta_p = np.dot([betas[t] for t in tickers], w_expo)
|
| 104 |
-
er_p = capm_er(beta_p, rf_ann, erp_ann)
|
| 105 |
-
cov = cov_ann.loc[tickers, tickers].to_numpy()
|
| 106 |
-
sigma_p = math.sqrt(max(w_expo @ cov @ w_expo, 0.0))
|
| 107 |
-
return beta_p, er_p, sigma_p
|
| 108 |
-
|
| 109 |
-
def efficient_same_sigma(sigma_target, rf_ann, erp_ann, sigma_mkt):
|
| 110 |
-
a = sigma_target / sigma_mkt
|
| 111 |
-
return a, 1 - a, rf_ann + a * erp_ann
|
| 112 |
-
|
| 113 |
-
def efficient_same_return(mu_target, rf_ann, erp_ann, sigma_mkt):
|
| 114 |
-
a = (mu_target - rf_ann) / erp_ann
|
| 115 |
-
return a, 1 - a, abs(a) * sigma_mkt
|
| 116 |
-
|
| 117 |
-
def build_synthetic_dataset(symbols: List[str], years: int, rf_ann: float, erp_ann: float):
|
| 118 |
-
betas, covA, _, _ = estimate_all_moments_aligned(symbols, years, rf_ann)
|
| 119 |
-
rng = np.random.default_rng(42)
|
| 120 |
-
rows = []
|
| 121 |
-
for _ in range(1000):
|
| 122 |
-
k = rng.integers(2, len(symbols)+1)
|
| 123 |
-
picks = list(rng.choice(symbols, size=k, replace=False))
|
| 124 |
-
raw = rng.dirichlet(np.ones(k))
|
| 125 |
-
gross = 1.0 + rng.gamma(2.0, 0.5)
|
| 126 |
-
w = gross * raw
|
| 127 |
-
stats = portfolio_stats({picks[i]: w[i] for i in range(k)}, covA, betas, rf_ann, erp_ann)
|
| 128 |
-
rows.append({
|
| 129 |
-
"tickers": ",".join(picks),
|
| 130 |
-
"weights": ",".join(f"{x:.4f}" for x in w),
|
| 131 |
-
"beta_p": stats[0], "er_p": stats[1], "sigma_p": stats[2]
|
| 132 |
})
|
| 133 |
-
return pd.DataFrame(rows)
|
| 134 |
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
return high, medium, low
|
| 141 |
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
high, medium, low = select_risk_profiles(synth_df)
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
"
|
| 159 |
-
"
|
| 160 |
-
"
|
| 161 |
-
"
|
|
|
|
|
|
|
| 162 |
}
|
| 163 |
|
| 164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
with gr.Blocks() as demo:
|
| 166 |
-
gr.Markdown("##
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
def
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
|
| 176 |
if __name__ == "__main__":
|
| 177 |
-
ensure_data_dir()
|
| 178 |
demo.launch()
|
|
|
|
| 1 |
+
# app.py - Part 1
|
|
|
|
| 2 |
|
|
|
|
|
|
|
| 3 |
import pandas as pd
|
| 4 |
+
import numpy as np
|
|
|
|
|
|
|
|
|
|
| 5 |
import yfinance as yf
|
| 6 |
+
import gradio as gr
|
| 7 |
+
from itertools import combinations_with_replacement
|
| 8 |
+
|
| 9 |
+
# -------------------
|
| 10 |
+
# Helper functions
|
| 11 |
+
# -------------------
|
| 12 |
+
|
| 13 |
+
def fetch_live_data(tickers, period="1y"):
|
| 14 |
+
"""Fetch historical adjusted close prices for given tickers."""
|
| 15 |
+
data = yf.download(tickers, period=period)["Adj Close"]
|
| 16 |
+
return data.dropna()
|
| 17 |
+
|
| 18 |
+
def calculate_portfolio_metrics(weights, mean_returns, cov_matrix, risk_free_rate=0.045):
|
| 19 |
+
"""Return expected portfolio return, volatility, and beta."""
|
| 20 |
+
weights = np.array(weights)
|
| 21 |
+
portfolio_return = np.sum(mean_returns * weights)
|
| 22 |
+
portfolio_volatility = np.sqrt(np.dot(weights.T, np.dot(cov_matrix, weights)))
|
| 23 |
+
beta = np.sum(weights) # Placeholder if no real beta calc
|
| 24 |
+
return portfolio_return, portfolio_volatility, beta
|
| 25 |
+
|
| 26 |
+
def generate_synthetic_portfolios(tickers, num_portfolios=1000):
|
| 27 |
+
"""Generate synthetic portfolios from live data for given tickers."""
|
| 28 |
+
df_prices = fetch_live_data(tickers)
|
| 29 |
+
returns = df_prices.pct_change().dropna()
|
| 30 |
+
mean_returns = returns.mean()
|
| 31 |
+
cov_matrix = returns.cov()
|
| 32 |
+
|
| 33 |
+
synthetic_data = []
|
| 34 |
+
for _ in range(num_portfolios):
|
| 35 |
+
weights = np.random.random(len(tickers))
|
| 36 |
+
weights /= np.sum(weights)
|
| 37 |
+
er, sigma, beta = calculate_portfolio_metrics(weights, mean_returns, cov_matrix)
|
| 38 |
+
synthetic_data.append({
|
| 39 |
+
"weights": weights,
|
| 40 |
+
"er_p": er,
|
| 41 |
+
"sigma_p": sigma,
|
| 42 |
+
"beta_p": beta
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
})
|
|
|
|
| 44 |
|
| 45 |
+
return pd.DataFrame(synthetic_data)
|
| 46 |
+
|
| 47 |
+
def select_risk_profiles(synth_df):
|
| 48 |
+
"""Select high/high, medium/medium, low/low risk profiles from synthetic dataset."""
|
| 49 |
+
high = synth_df.sort_values("er_p", ascending=False).iloc[0]
|
| 50 |
+
low = synth_df.sort_values("sigma_p", ascending=True).iloc[0]
|
| 51 |
+
|
| 52 |
+
median_idx = ((synth_df["sigma_p"] - synth_df["sigma_p"].median()).abs() +
|
| 53 |
+
(synth_df["er_p"] - synth_df["er_p"].median()).abs()).idxmin()
|
| 54 |
+
medium = synth_df.loc[median_idx]
|
| 55 |
+
|
| 56 |
return high, medium, low
|
| 57 |
|
| 58 |
+
def find_efficient_same_sigma(user_er, user_sigma, synth_df):
|
| 59 |
+
"""Find portfolio with same sigma but highest return."""
|
| 60 |
+
close_sigma = synth_df[np.isclose(synth_df["sigma_p"], user_sigma, atol=0.002)]
|
| 61 |
+
if close_sigma.empty:
|
| 62 |
+
return synth_df.iloc[0]
|
| 63 |
+
return close_sigma.sort_values("er_p", ascending=False).iloc[0]
|
| 64 |
+
|
| 65 |
+
def find_efficient_same_return(user_er, user_sigma, synth_df):
|
| 66 |
+
"""Find portfolio with same return but lowest sigma."""
|
| 67 |
+
close_return = synth_df[np.isclose(synth_df["er_p"], user_er, atol=0.002)]
|
| 68 |
+
if close_return.empty:
|
| 69 |
+
return synth_df.iloc[0]
|
| 70 |
+
return close_return.sort_values("sigma_p", ascending=True).iloc[0]
|
| 71 |
+
# -------------------
|
| 72 |
+
# Main compute function
|
| 73 |
+
# -------------------
|
| 74 |
+
|
| 75 |
+
def compute(user_tickers):
|
| 76 |
+
# Convert comma-separated string into ticker list
|
| 77 |
+
tickers = [t.strip().upper() for t in user_tickers.split(",") if t.strip()]
|
| 78 |
+
if len(tickers) < 2:
|
| 79 |
+
return "Please enter at least two tickers.", None
|
| 80 |
+
|
| 81 |
+
# Fetch live data & compute user portfolio metrics (equal weights for now)
|
| 82 |
+
df_prices = fetch_live_data(tickers)
|
| 83 |
+
if df_prices.empty:
|
| 84 |
+
return "Could not fetch data. Check tickers.", None
|
| 85 |
+
|
| 86 |
+
returns = df_prices.pct_change().dropna()
|
| 87 |
+
mean_returns = returns.mean()
|
| 88 |
+
cov_matrix = returns.cov()
|
| 89 |
+
user_weights = np.ones(len(tickers)) / len(tickers)
|
| 90 |
+
user_er, user_sigma, user_beta = calculate_portfolio_metrics(user_weights, mean_returns, cov_matrix)
|
| 91 |
+
|
| 92 |
+
# Generate synthetic dataset
|
| 93 |
+
synth_df = generate_synthetic_portfolios(tickers, num_portfolios=1000)
|
| 94 |
+
|
| 95 |
+
# Select profiles
|
| 96 |
+
eff_sigma = find_efficient_same_sigma(user_er, user_sigma, synth_df)
|
| 97 |
+
eff_return = find_efficient_same_return(user_er, user_sigma, synth_df)
|
| 98 |
high, medium, low = select_risk_profiles(synth_df)
|
| 99 |
+
|
| 100 |
+
# Prepare results DataFrame
|
| 101 |
+
portfolios = {
|
| 102 |
+
"User Portfolio": [user_er, user_sigma, user_beta, user_weights],
|
| 103 |
+
"Efficient (Same Sigma)": [eff_sigma.er_p, eff_sigma.sigma_p, eff_sigma.beta_p, eff_sigma.weights],
|
| 104 |
+
"Efficient (Same Return)": [eff_return.er_p, eff_return.sigma_p, eff_return.beta_p, eff_return.weights],
|
| 105 |
+
"High Risk / High Return": [high.er_p, high.sigma_p, high.beta_p, high.weights],
|
| 106 |
+
"Medium Risk / Medium Return": [medium.er_p, medium.sigma_p, medium.beta_p, medium.weights],
|
| 107 |
+
"Low Risk / Low Return": [low.er_p, low.sigma_p, low.beta_p, low.weights],
|
| 108 |
}
|
| 109 |
|
| 110 |
+
df_out = pd.DataFrame(portfolios, index=["Expected Return", "Sigma", "Beta", "Weights"])
|
| 111 |
+
|
| 112 |
+
return df_out.to_markdown(), df_out
|
| 113 |
+
|
| 114 |
+
# -------------------
|
| 115 |
+
# Gradio Interface
|
| 116 |
+
# -------------------
|
| 117 |
+
|
| 118 |
with gr.Blocks() as demo:
|
| 119 |
+
gr.Markdown("## Portfolio Optimizer and Risk Profiles")
|
| 120 |
+
tickers_input = gr.Textbox(label="Enter tickers (comma separated)", placeholder="AAPL, MSFT, GOOG")
|
| 121 |
+
output_md = gr.Markdown()
|
| 122 |
+
output_df = gr.Dataframe(headers=["Portfolio", "Value"], interactive=False)
|
| 123 |
+
|
| 124 |
+
def run_and_display(tickers):
|
| 125 |
+
md, df = compute(tickers)
|
| 126 |
+
if df is None:
|
| 127 |
+
return md, None
|
| 128 |
+
return md, df
|
| 129 |
+
|
| 130 |
+
run_btn = gr.Button("Run Analysis")
|
| 131 |
+
run_btn.click(fn=run_and_display, inputs=tickers_input, outputs=[output_md, output_df])
|
| 132 |
|
| 133 |
if __name__ == "__main__":
|
|
|
|
| 134 |
demo.launch()
|