Update Dockerfile
Browse files- Dockerfile +38 -608
Dockerfile
CHANGED
|
@@ -1,608 +1,38 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
matplotlib
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
if y <= 3: return "DGS3"
|
| 40 |
-
if y <= 5: return "DGS5"
|
| 41 |
-
if y <= 7: return "DGS7"
|
| 42 |
-
if y <= 10: return "DGS10"
|
| 43 |
-
if y <= 20: return "DGS20"
|
| 44 |
-
return "DGS30"
|
| 45 |
-
|
| 46 |
-
def fetch_fred_yield_annual(code: str) -> float:
|
| 47 |
-
url = f"https://fred.stlouisfed.org/graph/fredgraph.csv?id={code}"
|
| 48 |
-
try:
|
| 49 |
-
r = requests.get(url, timeout=10)
|
| 50 |
-
r.raise_for_status()
|
| 51 |
-
df = pd.read_csv(io.StringIO(r.text))
|
| 52 |
-
s = pd.to_numeric(df.iloc[:, 1], errors="coerce").dropna()
|
| 53 |
-
return float(s.iloc[-1] / 100.0) if len(s) else 0.03
|
| 54 |
-
except Exception:
|
| 55 |
-
return 0.03
|
| 56 |
-
|
| 57 |
-
def fetch_prices_monthly(tickers: List[str], years: int) -> pd.DataFrame:
|
| 58 |
-
tickers = list(dict.fromkeys([t.upper().strip() for t in tickers]))
|
| 59 |
-
start = (pd.Timestamp.today(tz="UTC") - pd.DateOffset(years=years, days=7)).date()
|
| 60 |
-
end = pd.Timestamp.today(tz="UTC").date()
|
| 61 |
-
|
| 62 |
-
df = yf.download(
|
| 63 |
-
tickers,
|
| 64 |
-
start=start,
|
| 65 |
-
end=end,
|
| 66 |
-
interval="1mo",
|
| 67 |
-
auto_adjust=True,
|
| 68 |
-
actions=False,
|
| 69 |
-
progress=False,
|
| 70 |
-
group_by="column",
|
| 71 |
-
threads=False,
|
| 72 |
-
)
|
| 73 |
-
|
| 74 |
-
# Normalize to wide frame of prices (one column per ticker)
|
| 75 |
-
if isinstance(df, pd.Series):
|
| 76 |
-
df = df.to_frame()
|
| 77 |
-
if isinstance(df.columns, pd.MultiIndex):
|
| 78 |
-
lvl0 = [str(x) for x in df.columns.get_level_values(0).unique()]
|
| 79 |
-
if "Close" in lvl0:
|
| 80 |
-
df = df["Close"]
|
| 81 |
-
elif "Adj Close" in lvl0:
|
| 82 |
-
df = df["Adj Close"]
|
| 83 |
-
else:
|
| 84 |
-
df = df.xs(df.columns.levels[0][-1], axis=1, level=0, drop_level=True)
|
| 85 |
-
|
| 86 |
-
cols = [c for c in tickers if c in df.columns]
|
| 87 |
-
out = df[cols].dropna(how="all").fillna(method="ffill")
|
| 88 |
-
return out
|
| 89 |
-
|
| 90 |
-
def monthly_returns(prices: pd.DataFrame) -> pd.DataFrame:
|
| 91 |
-
return prices.pct_change().dropna()
|
| 92 |
-
|
| 93 |
-
def yahoo_search(query: str):
|
| 94 |
-
if not query or not str(query).strip():
|
| 95 |
-
return []
|
| 96 |
-
url = "https://query1.finance.yahoo.com/v1/finance/search"
|
| 97 |
-
params = {"q": query.strip(), "quotesCount": 10, "newsCount": 0}
|
| 98 |
-
headers = {"User-Agent": "Mozilla/5.0"}
|
| 99 |
-
try:
|
| 100 |
-
r = requests.get(url, params=params, headers=headers, timeout=10)
|
| 101 |
-
r.raise_for_status()
|
| 102 |
-
data = r.json()
|
| 103 |
-
out = []
|
| 104 |
-
for q in data.get("quotes", []):
|
| 105 |
-
sym = q.get("symbol")
|
| 106 |
-
name = q.get("shortname") or q.get("longname") or ""
|
| 107 |
-
exch = q.get("exchDisp") or ""
|
| 108 |
-
if sym and sym.isascii():
|
| 109 |
-
out.append(f"{sym} | {name} | {exch}")
|
| 110 |
-
if not out:
|
| 111 |
-
out = [f"{query.strip().upper()} | typed symbol | n/a"]
|
| 112 |
-
return out[:10]
|
| 113 |
-
except Exception:
|
| 114 |
-
return [f"{query.strip().upper()} | typed symbol | n/a"]
|
| 115 |
-
|
| 116 |
-
def validate_tickers(symbols: List[str], years: int) -> List[str]:
|
| 117 |
-
base = [s for s in dict.fromkeys([t.upper().strip() for t in symbols]) if s]
|
| 118 |
-
px = fetch_prices_monthly(base + [MARKET_TICKER], years)
|
| 119 |
-
ok = [s for s in base if s in px.columns]
|
| 120 |
-
if MARKET_TICKER not in px.columns:
|
| 121 |
-
return []
|
| 122 |
-
return ok
|
| 123 |
-
|
| 124 |
-
# -------------- aligned moments --------------
|
| 125 |
-
def get_aligned_monthly_returns(symbols: List[str], years: int) -> pd.DataFrame:
|
| 126 |
-
uniq = [c for c in dict.fromkeys(symbols) if c != MARKET_TICKER]
|
| 127 |
-
tickers = uniq + [MARKET_TICKER]
|
| 128 |
-
px = fetch_prices_monthly(tickers, years)
|
| 129 |
-
rets = monthly_returns(px)
|
| 130 |
-
cols = [c for c in uniq if c in rets.columns] + ([MARKET_TICKER] if MARKET_TICKER in rets.columns else [])
|
| 131 |
-
R = rets[cols].dropna(how="any")
|
| 132 |
-
return R.loc[:, ~R.columns.duplicated()]
|
| 133 |
-
|
| 134 |
-
def estimate_all_moments_aligned(symbols: List[str], years: int, rf_ann: float):
|
| 135 |
-
R = get_aligned_monthly_returns(symbols, years)
|
| 136 |
-
if MARKET_TICKER not in R.columns or len(R) < 3:
|
| 137 |
-
raise ValueError("Not enough aligned data with market proxy.")
|
| 138 |
-
rf_m = rf_ann / 12.0
|
| 139 |
-
|
| 140 |
-
m = R[MARKET_TICKER]
|
| 141 |
-
if isinstance(m, pd.DataFrame):
|
| 142 |
-
m = m.iloc[:, 0].squeeze()
|
| 143 |
-
|
| 144 |
-
mu_m_ann = float(m.mean() * 12.0)
|
| 145 |
-
sigma_m_ann = float(m.std(ddof=1) * math.sqrt(12.0))
|
| 146 |
-
erp_ann = float(mu_m_ann - rf_ann)
|
| 147 |
-
|
| 148 |
-
ex_m = m - rf_m
|
| 149 |
-
var_m = float(np.var(ex_m.values, ddof=1))
|
| 150 |
-
var_m = max(var_m, 1e-9)
|
| 151 |
-
|
| 152 |
-
betas: Dict[str, float] = {}
|
| 153 |
-
for s in [c for c in R.columns if c != MARKET_TICKER]:
|
| 154 |
-
ex_s = R[s] - rf_m
|
| 155 |
-
cov_sm = float(np.cov(ex_s.values, ex_m.values, ddof=1)[0, 1])
|
| 156 |
-
betas[s] = cov_sm / var_m
|
| 157 |
-
|
| 158 |
-
betas[MARKET_TICKER] = 1.0
|
| 159 |
-
|
| 160 |
-
asset_cols = [c for c in R.columns if c != MARKET_TICKER]
|
| 161 |
-
cov_m = np.cov(R[asset_cols].values.T, ddof=1) if asset_cols else np.zeros((0, 0))
|
| 162 |
-
covA = pd.DataFrame(cov_m * 12.0, index=asset_cols, columns=asset_cols)
|
| 163 |
-
|
| 164 |
-
return {"betas": betas, "cov_ann": covA, "erp_ann": erp_ann, "sigma_m_ann": sigma_m_ann}
|
| 165 |
-
|
| 166 |
-
def capm_er(beta: float, rf_ann: float, erp_ann: float) -> float:
|
| 167 |
-
return float(rf_ann + beta * erp_ann)
|
| 168 |
-
|
| 169 |
-
def portfolio_stats(weights: Dict[str, float],
|
| 170 |
-
cov_ann: pd.DataFrame,
|
| 171 |
-
betas: Dict[str, float],
|
| 172 |
-
rf_ann: float,
|
| 173 |
-
erp_ann: float) -> Tuple[float, float, float]:
|
| 174 |
-
tickers = list(weights.keys())
|
| 175 |
-
w = np.array([weights[t] for t in tickers], dtype=float)
|
| 176 |
-
gross = float(np.sum(np.abs(w)))
|
| 177 |
-
if gross <= 1e-12:
|
| 178 |
-
return 0.0, rf_ann, 0.0
|
| 179 |
-
w_expo = w / gross
|
| 180 |
-
beta_p = float(np.dot([betas.get(t, 0.0) for t in tickers], w_expo))
|
| 181 |
-
mu_capm = capm_er(beta_p, rf_ann, erp_ann)
|
| 182 |
-
cov = cov_ann.reindex(index=tickers, columns=tickers).fillna(0.0).to_numpy()
|
| 183 |
-
sigma_hist = float(max(w_expo.T @ cov @ w_expo, 0.0)) ** 0.5
|
| 184 |
-
return beta_p, mu_capm, sigma_hist # <-- X uses HIST sigma
|
| 185 |
-
|
| 186 |
-
def efficient_same_sigma(sigma_target: float, rf_ann: float, erp_ann: float, sigma_mkt: float):
|
| 187 |
-
if sigma_mkt <= 1e-12:
|
| 188 |
-
return 0.0, 1.0, rf_ann
|
| 189 |
-
a = sigma_target / sigma_mkt
|
| 190 |
-
return a, 1.0 - a, rf_ann + a * erp_ann
|
| 191 |
-
|
| 192 |
-
def efficient_same_return(mu_target: float, rf_ann: float, erp_ann: float, sigma_mkt: float):
|
| 193 |
-
if abs(erp_ann) <= 1e-12:
|
| 194 |
-
return 0.0, 1.0, rf_ann
|
| 195 |
-
a = (mu_target - rf_ann) / erp_ann
|
| 196 |
-
return a, 1.0 - a, abs(a) * sigma_mkt
|
| 197 |
-
|
| 198 |
-
# -------------- plotting (CAPM on CML) --------------
|
| 199 |
-
def _pct(x):
|
| 200 |
-
return np.asarray(x, dtype=float) * 100.0
|
| 201 |
-
|
| 202 |
-
def plot_cml(
|
| 203 |
-
rf_ann, erp_ann, sigma_mkt,
|
| 204 |
-
sigma_hist, mu_capm,
|
| 205 |
-
mu_same_sigma, sigma_same_mu,
|
| 206 |
-
sugg_mu=None, sugg_sigma=None
|
| 207 |
-
) -> Image.Image:
|
| 208 |
-
fig = plt.figure(figsize=(6, 4), dpi=120)
|
| 209 |
-
|
| 210 |
-
xmax = max(0.3, sigma_mkt * 2.2, (sigma_hist or 0.0) * 1.6, (sugg_sigma or 0.0) * 1.6)
|
| 211 |
-
xs = np.linspace(0, xmax, 200)
|
| 212 |
-
cml = rf_ann + (erp_ann / max(sigma_mkt, 1e-9)) * xs
|
| 213 |
-
|
| 214 |
-
plt.plot(_pct(xs), _pct(cml), label="CML via Market", linewidth=1.8)
|
| 215 |
-
plt.scatter([_pct(0)], [_pct(rf_ann)], label="Risk-free")
|
| 216 |
-
plt.scatter([_pct(sigma_mkt)], [_pct(rf_ann + erp_ann)], label="Market")
|
| 217 |
-
|
| 218 |
-
# YOUR point: X = historical sigma, Y = CAPM expected return
|
| 219 |
-
plt.scatter([_pct(sigma_hist)], [_pct(mu_capm)], label="Your CAPM point", marker="o")
|
| 220 |
-
|
| 221 |
-
# Efficient references on CML
|
| 222 |
-
plt.scatter([_pct(sigma_hist)], [_pct(mu_same_sigma)], label="Efficient: same σ", marker="^")
|
| 223 |
-
plt.scatter([_pct(sigma_same_mu)], [_pct(mu_capm)], label="Efficient: same E[r]", marker="v")
|
| 224 |
-
|
| 225 |
-
if sugg_mu is not None and sugg_sigma is not None:
|
| 226 |
-
plt.scatter([_pct(sugg_sigma)], [_pct(sugg_mu)], label="Selected Suggestion", marker="X", s=60)
|
| 227 |
-
|
| 228 |
-
plt.xlabel("σ (annualized, %)")
|
| 229 |
-
plt.ylabel("Expected return (annual, %)")
|
| 230 |
-
plt.legend(loc="best")
|
| 231 |
-
plt.tight_layout()
|
| 232 |
-
|
| 233 |
-
buf = io.BytesIO()
|
| 234 |
-
plt.savefig(buf, format="png")
|
| 235 |
-
plt.close(fig)
|
| 236 |
-
buf.seek(0)
|
| 237 |
-
return Image.open(buf)
|
| 238 |
-
|
| 239 |
-
# -------------- synthetic dataset --------------
|
| 240 |
-
def build_synthetic_dataset(universe: List[str],
|
| 241 |
-
covA: pd.DataFrame,
|
| 242 |
-
betas: Dict[str, float],
|
| 243 |
-
rf_ann: float,
|
| 244 |
-
erp_ann: float,
|
| 245 |
-
sigma_mkt: float,
|
| 246 |
-
n_rows: int = SYNTH_ROWS) -> pd.DataFrame:
|
| 247 |
-
rng = np.random.default_rng(12345)
|
| 248 |
-
assets = [t for t in universe if t != MARKET_TICKER]
|
| 249 |
-
if not assets:
|
| 250 |
-
assets = [MARKET_TICKER]
|
| 251 |
-
|
| 252 |
-
rows = []
|
| 253 |
-
for _ in range(n_rows):
|
| 254 |
-
k = int(rng.integers(low=2, high=min(8, len(universe)) + 1))
|
| 255 |
-
picks = list(rng.choice(universe, size=k, replace=False))
|
| 256 |
-
w = rng.dirichlet(np.ones(k))
|
| 257 |
-
beta_p = float(np.dot([betas.get(t, 0.0) for t in picks], w))
|
| 258 |
-
mu_capm = capm_er(beta_p, rf_ann, erp_ann)
|
| 259 |
-
sub = covA.reindex(index=picks, columns=picks).fillna(0.0).to_numpy()
|
| 260 |
-
sigma_hist = float(max(w.T @ sub @ w, 0.0)) ** 0.5
|
| 261 |
-
sigma_capm = abs(beta_p) * sigma_mkt
|
| 262 |
-
|
| 263 |
-
rows.append({
|
| 264 |
-
"tickers": ",".join(picks),
|
| 265 |
-
"weights": ",".join(f"{x:.6f}" for x in w),
|
| 266 |
-
"beta": beta_p,
|
| 267 |
-
"mu_capm": mu_capm,
|
| 268 |
-
"sigma_hist": sigma_hist,
|
| 269 |
-
"sigma_capm": sigma_capm
|
| 270 |
-
})
|
| 271 |
-
return pd.DataFrame(rows)
|
| 272 |
-
|
| 273 |
-
def _band_bounds(sigma_mkt: float, band: str) -> Tuple[float, float]:
|
| 274 |
-
band = (band or "Medium").strip().lower()
|
| 275 |
-
if band.startswith("low"):
|
| 276 |
-
return 0.0, 0.8 * sigma_mkt
|
| 277 |
-
if band.startswith("high"):
|
| 278 |
-
return 1.2 * sigma_mkt, 3.0 * sigma_mkt
|
| 279 |
-
return 0.8 * sigma_mkt, 1.2 * sigma_mkt
|
| 280 |
-
|
| 281 |
-
def top3_by_return_in_band(df: pd.DataFrame, band: str, sigma_mkt: float) -> pd.DataFrame:
|
| 282 |
-
lo, hi = _band_bounds(sigma_mkt, band)
|
| 283 |
-
pick = df[(df["sigma_capm"] >= lo) & (df["sigma_capm"] <= hi)].copy()
|
| 284 |
-
if pick.empty:
|
| 285 |
-
pick = df.copy()
|
| 286 |
-
pick = pick.sort_values("mu_capm", ascending=False).head(3).reset_index(drop=True)
|
| 287 |
-
pick.insert(0, "pick", [1, 2, 3][: len(pick)])
|
| 288 |
-
return pick
|
| 289 |
-
|
| 290 |
-
# -------------- optional: embeddings rerank --------------
|
| 291 |
-
def rerank_with_embeddings(top3: pd.DataFrame, band: str) -> pd.DataFrame:
|
| 292 |
-
try:
|
| 293 |
-
from sentence_transformers import SentenceTransformer
|
| 294 |
-
model = SentenceTransformer("FinLang/finance-embeddings-investopedia")
|
| 295 |
-
prompt = {
|
| 296 |
-
"low": "low risk conservative portfolio stable diversified market exposure",
|
| 297 |
-
"medium": "balanced medium risk diversified portfolio",
|
| 298 |
-
"high": "high risk growth aggressive portfolio higher expected return"
|
| 299 |
-
}[(band or "medium").lower() if (band or "medium").lower() in {"low","medium","high"} else "medium"]
|
| 300 |
-
|
| 301 |
-
cand_texts = []
|
| 302 |
-
for _, r in top3.iterrows():
|
| 303 |
-
cand_texts.append(
|
| 304 |
-
f"portfolio with tickers {r['tickers']} having beta {float(r['beta']):.2f}, "
|
| 305 |
-
f"expected return {float(r['mu_capm']):.3f}, sigma {float(r['sigma_capm']):.3f}"
|
| 306 |
-
)
|
| 307 |
-
|
| 308 |
-
q = model.encode([prompt])
|
| 309 |
-
c = model.encode(cand_texts)
|
| 310 |
-
sims = (q @ c.T) / (np.linalg.norm(q) * np.linalg.norm(c, axis=1, keepdims=False))
|
| 311 |
-
order = np.argsort(-sims.ravel())
|
| 312 |
-
return top3.iloc[order].reset_index(drop=True)
|
| 313 |
-
except Exception:
|
| 314 |
-
return top3
|
| 315 |
-
|
| 316 |
-
# -------------- UI helpers --------------
|
| 317 |
-
def empty_positions_df():
|
| 318 |
-
return pd.DataFrame(columns=["ticker", "amount_usd", "weight_exposure", "beta"])
|
| 319 |
-
|
| 320 |
-
def empty_suggestion_df():
|
| 321 |
-
return pd.DataFrame(columns=["ticker", "weight_%", "amount_$"])
|
| 322 |
-
|
| 323 |
-
def set_horizon(years: float):
|
| 324 |
-
y = max(1.0, min(100.0, float(years)))
|
| 325 |
-
code = fred_series_for_horizon(y)
|
| 326 |
-
rf = fetch_fred_yield_annual(code)
|
| 327 |
-
global HORIZON_YEARS, RF_CODE, RF_ANN
|
| 328 |
-
HORIZON_YEARS = y
|
| 329 |
-
RF_CODE = code
|
| 330 |
-
RF_ANN = rf
|
| 331 |
-
return f"Risk-free series {code}. Latest annual rate {rf:.2%}."
|
| 332 |
-
|
| 333 |
-
def search_tickers_cb(q: str):
|
| 334 |
-
opts = yahoo_search(q)
|
| 335 |
-
note = "Select a symbol and click 'Add selected to portfolio'." if opts else "No matches."
|
| 336 |
-
return note, gr.update(choices=opts, value=None)
|
| 337 |
-
|
| 338 |
-
def add_symbol(selection: str, table: Optional[pd.DataFrame]):
|
| 339 |
-
if not selection:
|
| 340 |
-
return table if isinstance(table, pd.DataFrame) else pd.DataFrame(columns=["ticker","amount_usd"]), "Pick a row in Matches first."
|
| 341 |
-
symbol = selection.split("|")[0].strip().upper()
|
| 342 |
-
|
| 343 |
-
current = []
|
| 344 |
-
if isinstance(table, pd.DataFrame) and not table.empty:
|
| 345 |
-
current = [str(x).upper() for x in table["ticker"].tolist() if str(x) != "nan"]
|
| 346 |
-
tickers = current if symbol in current else current + [symbol]
|
| 347 |
-
|
| 348 |
-
val = validate_tickers(tickers, years=DEFAULT_LOOKBACK_YEARS)
|
| 349 |
-
tickers = [t for t in tickers if t in val]
|
| 350 |
-
|
| 351 |
-
amt_map = {}
|
| 352 |
-
if isinstance(table, pd.DataFrame) and not table.empty:
|
| 353 |
-
for _, r in table.iterrows():
|
| 354 |
-
t = str(r.get("ticker", "")).upper()
|
| 355 |
-
if t in tickers:
|
| 356 |
-
amt_map[t] = float(pd.to_numeric(r.get("amount_usd", 0.0), errors="coerce") or 0.0)
|
| 357 |
-
|
| 358 |
-
new_table = pd.DataFrame({"ticker": tickers, "amount_usd": [amt_map.get(t, 0.0) for t in tickers]})
|
| 359 |
-
if len(new_table) > MAX_TICKERS:
|
| 360 |
-
new_table = new_table.iloc[:MAX_TICKERS]
|
| 361 |
-
return new_table, f"Reached max of {MAX_TICKERS}."
|
| 362 |
-
return new_table, f"Added {symbol}."
|
| 363 |
-
|
| 364 |
-
def lock_ticker_column(tb: Optional[pd.DataFrame]):
|
| 365 |
-
if not isinstance(tb, pd.DataFrame) or tb.empty:
|
| 366 |
-
return pd.DataFrame(columns=["ticker", "amount_usd"])
|
| 367 |
-
tickers = [str(x).upper() for x in tb["ticker"].tolist()]
|
| 368 |
-
amounts = pd.to_numeric(tb["amount_usd"], errors="coerce").fillna(0.0).tolist()
|
| 369 |
-
val = validate_tickers(tickers, years=DEFAULT_LOOKBACK_YEARS)
|
| 370 |
-
tickers = [t for t in tickers if t in val]
|
| 371 |
-
amounts = amounts[:len(tickers)] + [0.0] * max(0, len(tickers) - len(amounts))
|
| 372 |
-
return pd.DataFrame({"ticker": tickers, "amount_usd": amounts})
|
| 373 |
-
|
| 374 |
-
# -------------- main compute --------------
|
| 375 |
-
UNIVERSE: List[str] = [MARKET_TICKER, "QQQ", "VTI", "SOXX", "IBIT"]
|
| 376 |
-
|
| 377 |
-
def compute(
|
| 378 |
-
years_lookback: int,
|
| 379 |
-
table: Optional[pd.DataFrame],
|
| 380 |
-
risk_band: str,
|
| 381 |
-
use_embeddings: bool,
|
| 382 |
-
pick_idx: int
|
| 383 |
-
):
|
| 384 |
-
print("Compute: start")
|
| 385 |
-
# sanitize table
|
| 386 |
-
if isinstance(table, pd.DataFrame):
|
| 387 |
-
df = table.copy()
|
| 388 |
-
else:
|
| 389 |
-
df = pd.DataFrame(columns=["ticker", "amount_usd"])
|
| 390 |
-
df = df.dropna(how="all")
|
| 391 |
-
if "ticker" not in df.columns: df["ticker"] = []
|
| 392 |
-
if "amount_usd" not in df.columns: df["amount_usd"] = []
|
| 393 |
-
df["ticker"] = df["ticker"].astype(str).str.upper().str.strip()
|
| 394 |
-
df["amount_usd"] = pd.to_numeric(df["amount_usd"], errors="coerce").fillna(0.0)
|
| 395 |
-
|
| 396 |
-
symbols = [t for t in df["ticker"].tolist() if t]
|
| 397 |
-
if len(symbols) == 0:
|
| 398 |
-
return None, "Add at least one ticker.", "Universe empty.", empty_positions_df(), empty_suggestion_df(), None, gr.update()
|
| 399 |
-
|
| 400 |
-
symbols = validate_tickers(symbols, years_lookback)
|
| 401 |
-
print("Compute: validated", symbols)
|
| 402 |
-
if len(symbols) == 0:
|
| 403 |
-
return None, "Could not validate any tickers.", "Universe invalid.", empty_positions_df(), empty_suggestion_df(), None, gr.update()
|
| 404 |
-
|
| 405 |
-
global UNIVERSE
|
| 406 |
-
UNIVERSE = list(sorted(set([s for s in symbols if s != MARKET_TICKER] + [MARKET_TICKER])))[:MAX_TICKERS]
|
| 407 |
-
|
| 408 |
-
df = df[df["ticker"].isin(symbols)].copy()
|
| 409 |
-
amounts = {r["ticker"]: float(r["amount_usd"]) for _, r in df.iterrows()}
|
| 410 |
-
rf_ann = RF_ANN
|
| 411 |
-
|
| 412 |
-
# Moments
|
| 413 |
-
moms = estimate_all_moments_aligned(symbols, years_lookback, rf_ann)
|
| 414 |
-
betas, covA, erp_ann, sigma_mkt = moms["betas"], moms["cov_ann"], moms["erp_ann"], moms["sigma_m_ann"]
|
| 415 |
-
print("Compute: moments ok; sigma_mkt=", sigma_mkt, "erp=", erp_ann)
|
| 416 |
-
|
| 417 |
-
# Weights
|
| 418 |
-
gross = sum(abs(v) for v in amounts.values())
|
| 419 |
-
if gross <= 1e-12:
|
| 420 |
-
return None, "All amounts are zero.", "Universe ok.", empty_positions_df(), empty_suggestion_df(), None, gr.update()
|
| 421 |
-
weights = {k: v / gross for k, v in amounts.items()}
|
| 422 |
-
|
| 423 |
-
# Portfolio stats (X uses historical sigma; Y uses CAPM E[r])
|
| 424 |
-
beta_p, mu_capm, sigma_hist = portfolio_stats(weights, covA, betas, rf_ann, erp_ann)
|
| 425 |
-
sigma_capm = abs(beta_p) * sigma_mkt
|
| 426 |
-
|
| 427 |
-
# Efficient alternatives (on CML)
|
| 428 |
-
a_sigma, b_sigma, mu_eff_sigma = efficient_same_sigma(sigma_hist, rf_ann, erp_ann, sigma_mkt)
|
| 429 |
-
a_mu, b_mu, sigma_eff_mu = efficient_same_return(mu_capm, rf_ann, erp_ann, sigma_mkt)
|
| 430 |
-
|
| 431 |
-
# Synthetic dataset & suggestions
|
| 432 |
-
synth = build_synthetic_dataset(UNIVERSE, covA, betas, rf_ann, erp_ann, sigma_mkt, n_rows=SYNTH_ROWS)
|
| 433 |
-
csv_path = os.path.join(DATA_DIR, f"investor_profiles_{int(time.time())}.csv")
|
| 434 |
-
synth.to_csv(csv_path, index=False)
|
| 435 |
-
|
| 436 |
-
top3 = top3_by_return_in_band(synth, risk_band, sigma_mkt)
|
| 437 |
-
if use_embeddings:
|
| 438 |
-
top3 = rerank_with_embeddings(top3, risk_band)
|
| 439 |
-
if top3.empty:
|
| 440 |
-
top3 = synth.sort_values("mu_capm", ascending=False).head(3).reset_index(drop=True)
|
| 441 |
-
top3.insert(0, "pick", [1, 2, 3][: len(top3)])
|
| 442 |
-
|
| 443 |
-
idx = max(1, min(3, int(pick_idx))) - 1
|
| 444 |
-
row = top3.iloc[idx]
|
| 445 |
-
|
| 446 |
-
sugg_mu = float(row["mu_capm"])
|
| 447 |
-
sugg_sigma = float(row["sigma_capm"])
|
| 448 |
-
|
| 449 |
-
# suggestion holdings (% and $)
|
| 450 |
-
ts = [t.strip() for t in str(row["tickers"]).split(",")]
|
| 451 |
-
ws = [float(x) for x in str(row["weights"]).split(",")]
|
| 452 |
-
s = sum(ws) if ws else 1.0
|
| 453 |
-
ws = [max(0.0, w) / s for w in ws]
|
| 454 |
-
budget = gross if gross > 0 else 1.0
|
| 455 |
-
sugg_table = pd.DataFrame(
|
| 456 |
-
[{"ticker": t, "weight_%": round(w*100.0, 2), "amount_$": round(w*budget, 0)} for t, w in zip(ts, ws)],
|
| 457 |
-
columns=["ticker", "weight_%", "amount_$"]
|
| 458 |
-
)
|
| 459 |
-
|
| 460 |
-
# positions table
|
| 461 |
-
pos_table = pd.DataFrame(
|
| 462 |
-
[{
|
| 463 |
-
"ticker": t,
|
| 464 |
-
"amount_usd": amounts.get(t, 0.0),
|
| 465 |
-
"weight_exposure": weights.get(t, 0.0),
|
| 466 |
-
"beta": 1.0 if t == MARKET_TICKER else betas.get(t, np.nan)
|
| 467 |
-
} for t in symbols],
|
| 468 |
-
columns=["ticker", "amount_usd", "weight_exposure", "beta"]
|
| 469 |
-
)
|
| 470 |
-
|
| 471 |
-
# plot (CAPM on CML; your point uses sigma_hist on X)
|
| 472 |
-
img = plot_cml(
|
| 473 |
-
rf_ann, erp_ann, sigma_mkt,
|
| 474 |
-
sigma_hist, mu_capm,
|
| 475 |
-
mu_same_sigma=mu_eff_sigma, sigma_same_mu=sigma_eff_mu,
|
| 476 |
-
sugg_mu=sugg_mu, sugg_sigma=sugg_sigma
|
| 477 |
-
)
|
| 478 |
-
|
| 479 |
-
info = "\n".join([
|
| 480 |
-
"### Inputs",
|
| 481 |
-
f"- Lookback years {years_lookback}",
|
| 482 |
-
f"- Horizon years {int(round(HORIZON_YEARS))}",
|
| 483 |
-
f"- Risk-free {rf_ann:.2%} from {RF_CODE}",
|
| 484 |
-
f"- Market ERP {erp_ann:.2%}",
|
| 485 |
-
f"- Market σ {sigma_mkt:.2%}",
|
| 486 |
-
"",
|
| 487 |
-
"### Your portfolio (CAPM on CML axes)",
|
| 488 |
-
f"- Beta {beta_p:.2f}",
|
| 489 |
-
f"- Expected return (CAPM / SML) {mu_capm:.2%}",
|
| 490 |
-
f"- σ (historical) {sigma_hist:.2%}",
|
| 491 |
-
f"- σ on CML for same β (|β|×σ_mkt) {sigma_capm:.2%}",
|
| 492 |
-
"",
|
| 493 |
-
"### Efficient alternatives on CML",
|
| 494 |
-
f"- Same σ as your portfolio (historical): Market weight {a_sigma:.2f}, Bills weight {b_sigma:.2f}, return {mu_eff_sigma:.2%}",
|
| 495 |
-
f"- Same return (CAPM): Market weight {a_mu:.2f}, Bills weight {b_mu:.2f}, σ {sigma_eff_mu:.2%}",
|
| 496 |
-
"",
|
| 497 |
-
"### Dataset-based suggestions (risk: " + risk_band + ")",
|
| 498 |
-
f"- Showing Pick **#{idx+1}** → CAPM return {sugg_mu:.2%}, CAPM σ {sugg_sigma:.2%}",
|
| 499 |
-
"",
|
| 500 |
-
"_Plot shows CAPM E[r] vs σ; your point uses historical σ; efficient references are market/bills on the CML._"
|
| 501 |
-
])
|
| 502 |
-
|
| 503 |
-
uni_msg = f"Universe set to: {', '.join(UNIVERSE)}"
|
| 504 |
-
print("Compute: done")
|
| 505 |
-
return img, info, uni_msg, pos_table, sugg_table, csv_path, gr.update(label=f"Pick #{idx+1} of 3")
|
| 506 |
-
|
| 507 |
-
# -------------- UI --------------
|
| 508 |
-
def inc_pick(i: int): return min(3, max(1, int(i or 1) + 1))
|
| 509 |
-
def dec_pick(i: int): return max(1, min(3, int(i or 1) - 1))
|
| 510 |
-
|
| 511 |
-
with gr.Blocks(title="Efficient Portfolio Advisor", analytics_enabled=False) as demo:
|
| 512 |
-
gr.Markdown(
|
| 513 |
-
"## Efficient Portfolio Advisor\n"
|
| 514 |
-
"Search symbols, enter **dollar amounts**, set horizon. Returns use Yahoo Finance monthly data; risk-free from FRED. "
|
| 515 |
-
"Plot shows **CAPM point (E[r]) vs historical σ** plus efficient CML points."
|
| 516 |
-
)
|
| 517 |
-
|
| 518 |
-
with gr.Row():
|
| 519 |
-
with gr.Column(scale=1):
|
| 520 |
-
q = gr.Textbox(label="Search symbol")
|
| 521 |
-
search_note = gr.Markdown()
|
| 522 |
-
matches = gr.Dropdown(choices=[], label="Matches")
|
| 523 |
-
search_btn = gr.Button("Search")
|
| 524 |
-
add_btn = gr.Button("Add selected to portfolio")
|
| 525 |
-
|
| 526 |
-
gr.Markdown("### Portfolio positions (enter $ amounts; negatives allowed for shorts)")
|
| 527 |
-
table = gr.Dataframe(
|
| 528 |
-
headers=["ticker", "amount_usd"],
|
| 529 |
-
datatype=["str", "number"],
|
| 530 |
-
type="pandas",
|
| 531 |
-
row_count=0,
|
| 532 |
-
col_count=(2, "fixed")
|
| 533 |
-
)
|
| 534 |
-
|
| 535 |
-
horizon = gr.Number(label="Horizon in years (1–100)", value=HORIZON_YEARS, precision=0)
|
| 536 |
-
lookback = gr.Slider(1, 15, value=DEFAULT_LOOKBACK_YEARS, step=1, label="Lookback years for betas & covariances")
|
| 537 |
-
|
| 538 |
-
gr.Markdown("### Suggestions")
|
| 539 |
-
risk_band = gr.Radio(["Low", "Medium", "High"], value="Medium", label="Risk tolerance")
|
| 540 |
-
use_emb = gr.Checkbox(value=True, label="Use finance embeddings to refine picks")
|
| 541 |
-
|
| 542 |
-
with gr.Row():
|
| 543 |
-
prev_btn = gr.Button("◀ Prev")
|
| 544 |
-
pick_idx = gr.Number(value=1, precision=0, label="Carousel")
|
| 545 |
-
next_btn = gr.Button("Next ▶")
|
| 546 |
-
|
| 547 |
-
run_btn = gr.Button("Compute (build dataset & suggest)")
|
| 548 |
-
with gr.Column(scale=1):
|
| 549 |
-
plot = gr.Image(label="Capital Market Line (CAPM)", type="pil")
|
| 550 |
-
summary = gr.Markdown(label="Inputs & Results")
|
| 551 |
-
universe_msg = gr.Textbox(label="Universe status", interactive=False)
|
| 552 |
-
positions = gr.Dataframe(
|
| 553 |
-
label="Computed positions",
|
| 554 |
-
headers=["ticker", "amount_usd", "weight_exposure", "beta"],
|
| 555 |
-
datatype=["str", "number", "number", "number"],
|
| 556 |
-
type="pandas",
|
| 557 |
-
col_count=(4, "fixed"),
|
| 558 |
-
value=empty_positions_df(),
|
| 559 |
-
interactive=False
|
| 560 |
-
)
|
| 561 |
-
sugg_table = gr.Dataframe(
|
| 562 |
-
label="Selected suggestion (carousel) — holdings shown in % and $",
|
| 563 |
-
headers=["ticker", "weight_%", "amount_$"],
|
| 564 |
-
datatype=["str", "number", "number"],
|
| 565 |
-
type="pandas",
|
| 566 |
-
col_count=(3, "fixed"),
|
| 567 |
-
value=empty_suggestion_df(),
|
| 568 |
-
interactive=False
|
| 569 |
-
)
|
| 570 |
-
dl = gr.File(label="Generated dataset CSV", value=None, visible=True)
|
| 571 |
-
|
| 572 |
-
# wire search / add / locking / horizon
|
| 573 |
-
search_btn.click(fn=search_tickers_cb, inputs=q, outputs=[search_note, matches])
|
| 574 |
-
add_btn.click(fn=add_symbol, inputs=[matches, table], outputs=[table, search_note])
|
| 575 |
-
table.change(fn=lock_ticker_column, inputs=table, outputs=table)
|
| 576 |
-
horizon.change(fn=set_horizon, inputs=horizon, outputs=universe_msg)
|
| 577 |
-
|
| 578 |
-
# carousel buttons update pick index and then recompute
|
| 579 |
-
prev_btn.click(fn=dec_pick, inputs=pick_idx, outputs=pick_idx).then(
|
| 580 |
-
fn=compute,
|
| 581 |
-
inputs=[lookback, table, risk_band, use_emb, pick_idx],
|
| 582 |
-
outputs=[plot, summary, universe_msg, positions, sugg_table, dl, pick_idx]
|
| 583 |
-
)
|
| 584 |
-
next_btn.click(fn=inc_pick, inputs=pick_idx, outputs=pick_idx).then(
|
| 585 |
-
fn=compute,
|
| 586 |
-
inputs=[lookback, table, risk_band, use_emb, pick_idx],
|
| 587 |
-
outputs=[plot, summary, universe_msg, positions, sugg_table, dl, pick_idx]
|
| 588 |
-
)
|
| 589 |
-
|
| 590 |
-
# main compute
|
| 591 |
-
run_btn.click(
|
| 592 |
-
fn=compute,
|
| 593 |
-
inputs=[lookback, table, risk_band, use_emb, pick_idx],
|
| 594 |
-
outputs=[plot, summary, universe_msg, positions, sugg_table, dl, pick_idx]
|
| 595 |
-
)
|
| 596 |
-
|
| 597 |
-
# initialize risk-free at launch
|
| 598 |
-
RF_CODE = fred_series_for_horizon(HORIZON_YEARS)
|
| 599 |
-
RF_ANN = fetch_fred_yield_annual(RF_CODE)
|
| 600 |
-
|
| 601 |
-
if __name__ == "__main__":
|
| 602 |
-
# IMPORTANT for Spaces/Docker: bind to 0.0.0.0 and the correct PORT
|
| 603 |
-
demo.queue(concurrency_count=8).launch(
|
| 604 |
-
server_name="0.0.0.0",
|
| 605 |
-
server_port=int(os.environ.get("PORT", "7860")),
|
| 606 |
-
show_error=True,
|
| 607 |
-
share=False
|
| 608 |
-
)
|
|
|
|
| 1 |
+
FROM python:3.10-slim-bullseye
|
| 2 |
+
|
| 3 |
+
ENV PYTHONDONTWRITEBYTECODE=1 \
|
| 4 |
+
PYTHONUNBUFFERED=1 \
|
| 5 |
+
PIP_NO_CACHE_DIR=1 \
|
| 6 |
+
PATH="/home/user/.local/bin:${PATH}" \
|
| 7 |
+
MPLCONFIGDIR="/home/user/.config/matplotlib" \
|
| 8 |
+
HF_HOME="/home/user/.cache/huggingface" \
|
| 9 |
+
SENTENCE_TRANSFORMERS_HOME="/home/user/.cache/sentencetransformers" \
|
| 10 |
+
GRADIO_SERVER_NAME="0.0.0.0" \
|
| 11 |
+
GRADIO_SERVER_PORT="7860"
|
| 12 |
+
|
| 13 |
+
# System deps for plotting, ffmpeg, etc.
|
| 14 |
+
RUN apt-get update && apt-get install -y --no-install-recommends \
|
| 15 |
+
git git-lfs ffmpeg \
|
| 16 |
+
libglib2.0-0 libsm6 libxext6 libxrender1 libgl1 \
|
| 17 |
+
fonts-dejavu-core \
|
| 18 |
+
&& rm -rf /var/lib/apt/lists/* \
|
| 19 |
+
&& git lfs install
|
| 20 |
+
|
| 21 |
+
# Non-root user so pip installs land in /home/user/.local
|
| 22 |
+
RUN useradd -m -u 1000 user
|
| 23 |
+
USER user
|
| 24 |
+
WORKDIR /home/user/app
|
| 25 |
+
|
| 26 |
+
# Pre-create writable caches
|
| 27 |
+
RUN mkdir -p /home/user/.config/matplotlib \
|
| 28 |
+
/home/user/.cache/huggingface/hub \
|
| 29 |
+
/home/user/.cache/sentencetransformers \
|
| 30 |
+
/home/user/.cache/pip
|
| 31 |
+
|
| 32 |
+
COPY --chown=user:user requirements.txt ./requirements.txt
|
| 33 |
+
RUN python -m pip install --upgrade pip && pip install --no-cache-dir -r requirements.txt
|
| 34 |
+
|
| 35 |
+
COPY --chown=user:user . .
|
| 36 |
+
|
| 37 |
+
EXPOSE 7860
|
| 38 |
+
CMD ["python", "app.py"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|