File size: 7,630 Bytes
2b67076
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import torch
from shared.utils import files_locator as fl 

def get_ltxv_text_encoder_filename(text_encoder_quantization):
    text_encoder_filename =  "T5_xxl_1.1/T5_xxl_1.1_enc_bf16.safetensors"
    if text_encoder_quantization =="int8":
        text_encoder_filename = text_encoder_filename.replace("bf16", "quanto_bf16_int8") 
    return fl.locate_file(text_encoder_filename, True)

class family_handler():
    @staticmethod
    def query_supported_types():
        return ["flux", "flux_chroma", "flux_dev_kontext", "flux_dev_umo", "flux_dev_uso", "flux_schnell" ]

    @staticmethod
    def query_family_maps():

        models_eqv_map = {
            "flux_dev_kontext" : "flux",
            "flux_dev_umo" : "flux",
            "flux_dev_uso" : "flux",
            "flux_schnell" : "flux",
            "flux_chroma" : "flux",
        }

        models_comp_map = { 
                    "flux": ["flux_chroma", "flux_dev_kontext", "flux_dev_umo", "flux_dev_uso", "flux_schnell" ]
                    }
        return models_eqv_map, models_comp_map
    @staticmethod
    def query_model_def(base_model_type, model_def):
        flux_model = "flux-dev" if base_model_type == "flux" else base_model_type.replace("_", "-")
        flux_schnell = flux_model == "flux-schnell" 
        flux_chroma = flux_model == "flux-chroma" 
        flux_uso = flux_model == "flux-dev-uso"
        flux_umo = flux_model == "flux-dev-umo"
        flux_kontext = flux_model == "flux-dev-kontext"
        
        extra_model_def = {
            "image_outputs" : True,
            "no_negative_prompt" : not flux_chroma,
            "flux-model": flux_model,
        }
        if flux_chroma:
            extra_model_def["guidance_max_phases"] = 1
        elif not flux_schnell:
            extra_model_def["embedded_guidance"] = True
        if flux_uso :
            extra_model_def["any_image_refs_relative_size"] = True
            extra_model_def["no_background_removal"] = True
            extra_model_def["image_ref_choices"] = {
                "choices":[("First Image is a Reference Image, and then the next ones (up to two) are Style Images", "KI"),
                            ("Up to two Images are Style Images", "KIJ")],
                "default": "KI",
                "letters_filter": "KIJ",
                "label": "Reference Images / Style Images"
            }
        
        if flux_kontext:
            extra_model_def["inpaint_support"] = True
            extra_model_def["image_ref_choices"] = {
                "choices": [
                    ("None", ""),
                    ("Conditional Images is first Main Subject / Landscape and may be followed by People / Objects", "KI"),
                    ("Conditional Images are People / Objects", "I"),
                    ],
                "letters_filter": "KI",
            }
            extra_model_def["background_removal_label"]= "Remove Backgrounds only behind People / Objects except main Subject / Landscape" 
        elif flux_umo:
            extra_model_def["image_ref_choices"] = {
                "choices": [
                    ("Conditional Images are People / Objects", "I"),
                    ],
                "letters_filter": "I",
                "visible": False
            }


        extra_model_def["fit_into_canvas_image_refs"] = 0

        return extra_model_def


    @staticmethod
    def get_rgb_factors(base_model_type ):
        from shared.RGB_factors import get_rgb_factors
        latent_rgb_factors, latent_rgb_factors_bias = get_rgb_factors("flux")
        return latent_rgb_factors, latent_rgb_factors_bias


    @staticmethod
    def query_model_family():
        return "flux"

    @staticmethod
    def query_family_infos():
        return {"flux":(30, "Flux 1")}

    @staticmethod
    def query_model_files(computeList, base_model_type, model_filename, text_encoder_quantization):
        text_encoder_filename = get_ltxv_text_encoder_filename(text_encoder_quantization)    
        return [
            {  
            "repoId" : "DeepBeepMeep/Flux", 
            "sourceFolderList" :  ["siglip-so400m-patch14-384", "",],
            "fileList" : [ ["config.json", "preprocessor_config.json", "model.safetensors"], ["flux_vae.safetensors"] ]   
            },
            {  
            "repoId" : "DeepBeepMeep/LTX_Video", 
            "sourceFolderList" :  ["T5_xxl_1.1"],
            "fileList" : [ ["added_tokens.json", "special_tokens_map.json", "spiece.model", "tokenizer_config.json"] + computeList(text_encoder_filename)  ]   
            },
            {  
            "repoId" : "DeepBeepMeep/HunyuanVideo", 
            "sourceFolderList" :  [  "clip_vit_large_patch14",   ],
            "fileList" :[ 
                            ["config.json", "merges.txt", "model.safetensors", "preprocessor_config.json", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.json"],
                            ]
            } 
        ]

    @staticmethod
    def load_model(model_filename, model_type, base_model_type, model_def, quantizeTransformer = False, text_encoder_quantization = None, dtype = torch.bfloat16, VAE_dtype = torch.float32, mixed_precision_transformer = False, save_quantized = False, submodel_no_list = None):
        from .flux_main  import model_factory

        flux_model = model_factory(
            checkpoint_dir="ckpts",
            model_filename=model_filename,
            model_type = model_type, 
            model_def = model_def,
            base_model_type=base_model_type,
            text_encoder_filename= get_ltxv_text_encoder_filename(text_encoder_quantization),
            quantizeTransformer = quantizeTransformer,
            dtype = dtype,
            VAE_dtype = VAE_dtype, 
            mixed_precision_transformer = mixed_precision_transformer,
            save_quantized = save_quantized
        )

        pipe = { "transformer": flux_model.model, "vae" : flux_model.vae, "text_encoder" : flux_model.clip, "text_encoder_2" : flux_model.t5}

        if flux_model.vision_encoder is not None:
            pipe["siglip_model"] = flux_model.vision_encoder 
        if flux_model.feature_embedder is not None:
            pipe["feature_embedder"] = flux_model.feature_embedder 
        return flux_model, pipe

    @staticmethod
    def fix_settings(base_model_type, settings_version, model_def, ui_defaults):
        flux_model = model_def.get("flux-model", "flux-dev")
        flux_uso = flux_model == "flux-dev-uso"
        if flux_uso and settings_version < 2.29:
            video_prompt_type = ui_defaults.get("video_prompt_type", "")
            if "I" in video_prompt_type:
                video_prompt_type = video_prompt_type.replace("I", "KI")
                ui_defaults["video_prompt_type"] = video_prompt_type 

        if settings_version < 2.34:
            ui_defaults["denoising_strength"] = 1.

    @staticmethod
    def update_default_settings(base_model_type, model_def, ui_defaults):
        flux_model = model_def.get("flux-model", "flux-dev")
        flux_uso = flux_model == "flux-dev-uso"
        flux_umo = flux_model == "flux-dev-umo"
        flux_kontext = flux_model == "flux-dev-kontext"
        ui_defaults.update({
            "embedded_guidance":  2.5,
        })

        if flux_kontext or flux_uso:
            ui_defaults.update({
                "video_prompt_type": "KI",
                "denoising_strength": 1.,
            })
        elif flux_umo:
            ui_defaults.update({
                "video_prompt_type": "I",
                "remove_background_images_ref": 0,
            })