Update inference_test_turkcell_with_intents.py
Browse files
inference_test_turkcell_with_intents.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import os, torch, threading, uvicorn, time, traceback, zipfile, random, json, shutil, asyncio, re
|
| 2 |
from fastapi import FastAPI
|
| 3 |
from fastapi.responses import HTMLResponse, JSONResponse
|
|
@@ -7,25 +8,18 @@ from peft import PeftModel
|
|
| 7 |
from datasets import Dataset
|
| 8 |
from datetime import datetime
|
| 9 |
|
| 10 |
-
# === Ortam
|
| 11 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 12 |
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "true"
|
| 13 |
os.environ["TORCH_HOME"] = "/app/.torch_cache"
|
| 14 |
os.makedirs("/app/.torch_cache", exist_ok=True)
|
| 15 |
|
|
|
|
| 16 |
MODEL_BASE = "TURKCELL/Turkcell-LLM-7b-v1"
|
| 17 |
USE_FINE_TUNE = False
|
| 18 |
FINE_TUNE_REPO = "UcsTurkey/trained-zips"
|
| 19 |
FINE_TUNE_ZIP = "trained_model_000_009.zip"
|
| 20 |
USE_SAMPLING = False
|
| 21 |
-
|
| 22 |
-
INTENT_MODEL_PATH = "intent_model"
|
| 23 |
-
INTENT_MODEL_ID = "dbmdz/bert-base-turkish-cased"
|
| 24 |
-
INTENT_MODEL = None
|
| 25 |
-
INTENT_TOKENIZER = None
|
| 26 |
-
LABEL2ID = {}
|
| 27 |
-
INTENT_DEFINITIONS = {}
|
| 28 |
-
|
| 29 |
INTENT_CONFIDENCE_THRESHOLD = 0.5
|
| 30 |
LLM_CONFIDENCE_THRESHOLD = 0.2
|
| 31 |
TRAIN_CONFIDENCE_THRESHOLD = 0.7
|
|
@@ -35,7 +29,14 @@ FALLBACK_ANSWERS = [
|
|
| 35 |
"Bu soruya şu an yanıt veremiyorum."
|
| 36 |
]
|
| 37 |
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
app = FastAPI()
|
| 40 |
chat_history = []
|
| 41 |
model = None
|
|
@@ -76,8 +77,182 @@ def root():
|
|
| 76 |
</body></html>
|
| 77 |
"""
|
| 78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
def log(message):
|
| 80 |
-
timestamp = datetime.now().strftime("%
|
| 81 |
print(f"[{timestamp}] {message}", flush=True)
|
| 82 |
|
| 83 |
def setup_model():
|
|
@@ -86,22 +261,20 @@ def setup_model():
|
|
| 86 |
log("🧠 setup_model() başladı")
|
| 87 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 88 |
log(f"📡 Kullanılan cihaz: {device}")
|
| 89 |
-
|
| 90 |
-
log("📥 Tokenizer indiriliyor...")
|
| 91 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_BASE, use_fast=False)
|
| 92 |
log("📦 Tokenizer yüklendi.")
|
| 93 |
-
|
| 94 |
-
log("🧠 Model indiriliyor...")
|
| 95 |
model = AutoModelForCausalLM.from_pretrained(MODEL_BASE, torch_dtype=torch.float32).to(device)
|
| 96 |
-
log("📦 Model
|
| 97 |
-
|
| 98 |
tokenizer.pad_token = tokenizer.pad_token or tokenizer.eos_token
|
| 99 |
model.config.pad_token_id = tokenizer.pad_token_id
|
| 100 |
eos_token_id = tokenizer("<|im_end|>", add_special_tokens=False)["input_ids"][0]
|
| 101 |
-
|
| 102 |
model.eval()
|
| 103 |
-
log("✅ Ana model eval() çağrıldı
|
| 104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
except Exception as e:
|
| 106 |
log(f"❌ setup_model() hatası: {e}")
|
| 107 |
traceback.print_exc()
|
|
|
|
| 1 |
+
# fine_tune_inference_with_intent.py
|
| 2 |
import os, torch, threading, uvicorn, time, traceback, zipfile, random, json, shutil, asyncio, re
|
| 3 |
from fastapi import FastAPI
|
| 4 |
from fastapi.responses import HTMLResponse, JSONResponse
|
|
|
|
| 8 |
from datasets import Dataset
|
| 9 |
from datetime import datetime
|
| 10 |
|
| 11 |
+
# === Ortam
|
| 12 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 13 |
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "true"
|
| 14 |
os.environ["TORCH_HOME"] = "/app/.torch_cache"
|
| 15 |
os.makedirs("/app/.torch_cache", exist_ok=True)
|
| 16 |
|
| 17 |
+
# === Ayarlar
|
| 18 |
MODEL_BASE = "TURKCELL/Turkcell-LLM-7b-v1"
|
| 19 |
USE_FINE_TUNE = False
|
| 20 |
FINE_TUNE_REPO = "UcsTurkey/trained-zips"
|
| 21 |
FINE_TUNE_ZIP = "trained_model_000_009.zip"
|
| 22 |
USE_SAMPLING = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
INTENT_CONFIDENCE_THRESHOLD = 0.5
|
| 24 |
LLM_CONFIDENCE_THRESHOLD = 0.2
|
| 25 |
TRAIN_CONFIDENCE_THRESHOLD = 0.7
|
|
|
|
| 29 |
"Bu soruya şu an yanıt veremiyorum."
|
| 30 |
]
|
| 31 |
|
| 32 |
+
INTENT_MODEL_PATH = "intent_model"
|
| 33 |
+
INTENT_MODEL_ID = "dbmdz/bert-base-turkish-cased"
|
| 34 |
+
INTENT_MODEL = None
|
| 35 |
+
INTENT_TOKENIZER = None
|
| 36 |
+
LABEL2ID = {}
|
| 37 |
+
INTENT_DEFINITIONS = {}
|
| 38 |
+
|
| 39 |
+
# === FastAPI
|
| 40 |
app = FastAPI()
|
| 41 |
chat_history = []
|
| 42 |
model = None
|
|
|
|
| 77 |
</body></html>
|
| 78 |
"""
|
| 79 |
|
| 80 |
+
@app.post("/train_intents", status_code=202)
|
| 81 |
+
def train_intents(train_input: TrainInput):
|
| 82 |
+
global INTENT_DEFINITIONS
|
| 83 |
+
log("📥 POST /train_intents çağrıldı.")
|
| 84 |
+
intents = train_input.intents
|
| 85 |
+
INTENT_DEFINITIONS = {intent["name"]: intent for intent in intents}
|
| 86 |
+
threading.Thread(target=lambda: background_training(intents), daemon=True).start()
|
| 87 |
+
return {"status": "accepted", "message": "Intent eğitimi arka planda başlatıldı."}
|
| 88 |
+
|
| 89 |
+
def background_training(intents):
|
| 90 |
+
try:
|
| 91 |
+
log("🔧 Intent eğitimi başlatıldı...")
|
| 92 |
+
texts, labels, label2id = [], [], {}
|
| 93 |
+
for idx, intent in enumerate(intents):
|
| 94 |
+
label2id[intent["name"]] = idx
|
| 95 |
+
for ex in intent["examples"]:
|
| 96 |
+
texts.append(ex)
|
| 97 |
+
labels.append(idx)
|
| 98 |
+
|
| 99 |
+
dataset = Dataset.from_dict({"text": texts, "label": labels})
|
| 100 |
+
tokenizer = AutoTokenizer.from_pretrained(INTENT_MODEL_ID)
|
| 101 |
+
config = AutoConfig.from_pretrained(INTENT_MODEL_ID)
|
| 102 |
+
config.problem_type = "single_label_classification"
|
| 103 |
+
config.num_labels = len(label2id)
|
| 104 |
+
model = AutoModelForSequenceClassification.from_pretrained(INTENT_MODEL_ID, config=config)
|
| 105 |
+
|
| 106 |
+
tokenized_data = {"input_ids": [], "attention_mask": [], "label": []}
|
| 107 |
+
for row in dataset:
|
| 108 |
+
out = tokenizer(row["text"], truncation=True, padding="max_length", max_length=128)
|
| 109 |
+
tokenized_data["input_ids"].append(out["input_ids"])
|
| 110 |
+
tokenized_data["attention_mask"].append(out["attention_mask"])
|
| 111 |
+
tokenized_data["label"].append(row["label"])
|
| 112 |
+
|
| 113 |
+
tokenized = Dataset.from_dict(tokenized_data)
|
| 114 |
+
tokenized.set_format(type="torch", columns=["input_ids", "attention_mask", "label"])
|
| 115 |
+
|
| 116 |
+
output_dir = "/app/intent_train_output"
|
| 117 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 118 |
+
trainer = Trainer(
|
| 119 |
+
model=model,
|
| 120 |
+
args=TrainingArguments(output_dir, per_device_train_batch_size=4, num_train_epochs=3, logging_steps=10, save_strategy="no", report_to=[]),
|
| 121 |
+
train_dataset=tokenized,
|
| 122 |
+
data_collator=default_data_collator
|
| 123 |
+
)
|
| 124 |
+
trainer.train()
|
| 125 |
+
|
| 126 |
+
# ✅ Başarı raporu üret
|
| 127 |
+
predictions = model(tokenized["input_ids"]).logits.argmax(dim=-1).tolist()
|
| 128 |
+
actuals = tokenized["label"]
|
| 129 |
+
counts = {}
|
| 130 |
+
correct = {}
|
| 131 |
+
for pred, actual in zip(predictions, actuals):
|
| 132 |
+
intent = list(label2id.keys())[list(label2id.values()).index(actual)]
|
| 133 |
+
counts[intent] = counts.get(intent, 0) + 1
|
| 134 |
+
if pred == actual:
|
| 135 |
+
correct[intent] = correct.get(intent, 0) + 1
|
| 136 |
+
for intent, total in counts.items():
|
| 137 |
+
accuracy = correct.get(intent, 0) / total
|
| 138 |
+
log(f"📊 Intent '{intent}' doğruluk: {accuracy:.2f} — {total} örnek")
|
| 139 |
+
if accuracy < TRAIN_CONFIDENCE_THRESHOLD or total < 5:
|
| 140 |
+
log(f"⚠️ Yetersiz performanslı intent: '{intent}' — Doğruluk: {accuracy:.2f}, Örnek: {total}")
|
| 141 |
+
|
| 142 |
+
if os.path.exists(INTENT_MODEL_PATH):
|
| 143 |
+
shutil.rmtree(INTENT_MODEL_PATH)
|
| 144 |
+
model.save_pretrained(INTENT_MODEL_PATH)
|
| 145 |
+
tokenizer.save_pretrained(INTENT_MODEL_PATH)
|
| 146 |
+
with open(os.path.join(INTENT_MODEL_PATH, "label2id.json"), "w") as f:
|
| 147 |
+
json.dump(label2id, f)
|
| 148 |
+
|
| 149 |
+
log("✅ Intent eğitimi tamamlandı ve model kaydedildi.")
|
| 150 |
+
|
| 151 |
+
except Exception as e:
|
| 152 |
+
log(f"❌ Intent eğitimi hatası: {e}")
|
| 153 |
+
traceback.print_exc()
|
| 154 |
+
|
| 155 |
+
@app.post("/load_intent_model")
|
| 156 |
+
def load_intent_model():
|
| 157 |
+
global INTENT_MODEL, INTENT_TOKENIZER, LABEL2ID
|
| 158 |
+
try:
|
| 159 |
+
INTENT_TOKENIZER = AutoTokenizer.from_pretrained(INTENT_MODEL_PATH)
|
| 160 |
+
INTENT_MODEL = AutoModelForSequenceClassification.from_pretrained(INTENT_MODEL_PATH)
|
| 161 |
+
with open(os.path.join(INTENT_MODEL_PATH, "label2id.json")) as f:
|
| 162 |
+
LABEL2ID = json.load(f)
|
| 163 |
+
return {"status": "ok", "message": "Intent modeli yüklendi."}
|
| 164 |
+
except Exception as e:
|
| 165 |
+
return JSONResponse(content={"error": str(e)}, status_code=500)
|
| 166 |
+
|
| 167 |
+
async def detect_intent(text):
|
| 168 |
+
inputs = INTENT_TOKENIZER(text, return_tensors="pt")
|
| 169 |
+
outputs = INTENT_MODEL(**inputs)
|
| 170 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 171 |
+
confidence, pred_id = torch.max(probs, dim=-1)
|
| 172 |
+
id2label = {v: k for k, v in LABEL2ID.items()}
|
| 173 |
+
return id2label[pred_id.item()], confidence.item()
|
| 174 |
+
|
| 175 |
+
async def generate_response(text):
|
| 176 |
+
messages = [{"role": "user", "content": text}]
|
| 177 |
+
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True)
|
| 178 |
+
eos_token = tokenizer("<|im_end|>", add_special_tokens=False)["input_ids"][0]
|
| 179 |
+
input_ids = encodeds.to(model.device)
|
| 180 |
+
attention_mask = (input_ids != tokenizer.pad_token_id).long()
|
| 181 |
+
|
| 182 |
+
with torch.no_grad():
|
| 183 |
+
output = model.generate(
|
| 184 |
+
input_ids=input_ids,
|
| 185 |
+
attention_mask=attention_mask,
|
| 186 |
+
max_new_tokens=128,
|
| 187 |
+
do_sample=USE_SAMPLING,
|
| 188 |
+
eos_token_id=eos_token,
|
| 189 |
+
pad_token_id=tokenizer.pad_token_id,
|
| 190 |
+
return_dict_in_generate=True,
|
| 191 |
+
output_scores=True
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
if not USE_SAMPLING:
|
| 195 |
+
scores = torch.stack(output.scores, dim=1)
|
| 196 |
+
probs = torch.nn.functional.softmax(scores[0], dim=-1)
|
| 197 |
+
top_conf = probs.max().item()
|
| 198 |
+
else:
|
| 199 |
+
top_conf = None
|
| 200 |
+
|
| 201 |
+
decoded = tokenizer.decode(output.sequences[0], skip_special_tokens=True).strip()
|
| 202 |
+
for tag in ["assistant", "<|im_start|>assistant"]:
|
| 203 |
+
start = decoded.find(tag)
|
| 204 |
+
if start != -1:
|
| 205 |
+
decoded = decoded[start + len(tag):].strip()
|
| 206 |
+
break
|
| 207 |
+
return decoded, top_conf
|
| 208 |
+
|
| 209 |
+
def extract_parameters(variables_list, user_input):
|
| 210 |
+
for pattern in variables_list:
|
| 211 |
+
regex = re.sub(r"(\w+):\{(.+?)\}", r"(?P<\1>.+?)", pattern)
|
| 212 |
+
match = re.match(regex, user_input)
|
| 213 |
+
if match:
|
| 214 |
+
return [{"key": k, "value": v} for k, v in match.groupdict().items()]
|
| 215 |
+
return []
|
| 216 |
+
|
| 217 |
+
def execute_intent(intent_name, user_input):
|
| 218 |
+
if intent_name in INTENT_DEFINITIONS:
|
| 219 |
+
definition = INTENT_DEFINITIONS[intent_name]
|
| 220 |
+
variables = extract_parameters(definition.get("variables", []), user_input)
|
| 221 |
+
log(f"🚀 execute_intent('{intent_name}', {variables})")
|
| 222 |
+
return {"intent": intent_name, "parameters": variables}
|
| 223 |
+
return {"intent": intent_name, "parameters": []}
|
| 224 |
+
|
| 225 |
+
@app.post("/chat")
|
| 226 |
+
async def chat(msg: Message):
|
| 227 |
+
user_input = msg.user_input.strip()
|
| 228 |
+
try:
|
| 229 |
+
if model is None or tokenizer is None:
|
| 230 |
+
return {"error": "Model yüklenmedi."}
|
| 231 |
+
|
| 232 |
+
if INTENT_MODEL:
|
| 233 |
+
intent_task = asyncio.create_task(detect_intent(user_input))
|
| 234 |
+
response_task = asyncio.create_task(generate_response(user_input))
|
| 235 |
+
intent, intent_conf = await intent_task
|
| 236 |
+
log(f"🎯 Intent: {intent} (conf={intent_conf:.2f})")
|
| 237 |
+
if intent_conf > INTENT_CONFIDENCE_THRESHOLD and intent in INTENT_DEFINITIONS:
|
| 238 |
+
result = execute_intent(intent, user_input)
|
| 239 |
+
return result
|
| 240 |
+
else:
|
| 241 |
+
response, response_conf = await response_task
|
| 242 |
+
if response_conf is not None and response_conf < LLM_CONFIDENCE_THRESHOLD:
|
| 243 |
+
return {"response": random.choice(FALLBACK_ANSWERS)}
|
| 244 |
+
return {"response": response}
|
| 245 |
+
else:
|
| 246 |
+
response, response_conf = await generate_response(user_input)
|
| 247 |
+
if response_conf is not None and response_conf < LLM_CONFIDENCE_THRESHOLD:
|
| 248 |
+
return {"response": random.choice(FALLBACK_ANSWERS)}
|
| 249 |
+
return {"response": response}
|
| 250 |
+
except Exception as e:
|
| 251 |
+
traceback.print_exc()
|
| 252 |
+
return JSONResponse(content={"error": str(e)}, status_code=500)
|
| 253 |
+
|
| 254 |
def log(message):
|
| 255 |
+
timestamp = datetime.now().strftime("%H:%M:%S")
|
| 256 |
print(f"[{timestamp}] {message}", flush=True)
|
| 257 |
|
| 258 |
def setup_model():
|
|
|
|
| 261 |
log("🧠 setup_model() başladı")
|
| 262 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 263 |
log(f"📡 Kullanılan cihaz: {device}")
|
|
|
|
|
|
|
| 264 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_BASE, use_fast=False)
|
| 265 |
log("📦 Tokenizer yüklendi.")
|
|
|
|
|
|
|
| 266 |
model = AutoModelForCausalLM.from_pretrained(MODEL_BASE, torch_dtype=torch.float32).to(device)
|
| 267 |
+
log("📦 Model indirildi ve yüklendi.")
|
|
|
|
| 268 |
tokenizer.pad_token = tokenizer.pad_token or tokenizer.eos_token
|
| 269 |
model.config.pad_token_id = tokenizer.pad_token_id
|
| 270 |
eos_token_id = tokenizer("<|im_end|>", add_special_tokens=False)["input_ids"][0]
|
|
|
|
| 271 |
model.eval()
|
| 272 |
+
log("✅ Ana model eval() çağrıldı")
|
| 273 |
+
log(f"📦 Intent modeli indiriliyor: {INTENT_MODEL_ID}")
|
| 274 |
+
_ = AutoTokenizer.from_pretrained(INTENT_MODEL_ID)
|
| 275 |
+
_ = AutoModelForSequenceClassification.from_pretrained(INTENT_MODEL_ID)
|
| 276 |
+
log("✅ Intent modeli indirildi (önbelleğe alındı).")
|
| 277 |
+
log("✔️ Model başarıyla yüklendi ve sohbet için hazır.")
|
| 278 |
except Exception as e:
|
| 279 |
log(f"❌ setup_model() hatası: {e}")
|
| 280 |
traceback.print_exc()
|