Update fine_tune_inference_test_mistral.py
Browse files
fine_tune_inference_test_mistral.py
CHANGED
|
@@ -1,19 +1,15 @@
|
|
| 1 |
-
import os, torch,
|
| 2 |
from fastapi import FastAPI
|
| 3 |
from fastapi.responses import HTMLResponse, JSONResponse
|
| 4 |
from pydantic import BaseModel
|
| 5 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 6 |
-
from peft import PeftModel
|
| 7 |
-
from huggingface_hub import hf_hub_download
|
| 8 |
from datetime import datetime
|
| 9 |
import random
|
| 10 |
|
| 11 |
# === Sabitler ===
|
| 12 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 13 |
MODEL_BASE = "mistralai/Mistral-7B-Instruct-v0.2"
|
| 14 |
-
|
| 15 |
-
FINE_TUNE_REPO = "UcsTurkey/trained-zips"
|
| 16 |
-
USE_FINE_TUNE = False # ✅ Ana modeli test etmek için False yap
|
| 17 |
USE_SAMPLING = False
|
| 18 |
CONFIDENCE_THRESHOLD = -1.5
|
| 19 |
FALLBACK_ANSWERS = [
|
|
@@ -47,7 +43,7 @@ def root():
|
|
| 47 |
<html>
|
| 48 |
<body>
|
| 49 |
<h2>Mistral 7B Chat</h2>
|
| 50 |
-
<textarea id=\"input\" rows=\"4\" cols=\"60\" placeholder=\"
|
| 51 |
<button onclick=\"send()\">Gönder</button>
|
| 52 |
<pre id=\"output\"></pre>
|
| 53 |
<script>
|
|
@@ -77,7 +73,8 @@ def chat(msg: Message):
|
|
| 77 |
if not user_input:
|
| 78 |
return {"error": "Boş giriş"}
|
| 79 |
|
| 80 |
-
|
|
|
|
| 81 |
inputs = tokenizer(prompt, return_tensors="pt")
|
| 82 |
|
| 83 |
if not inputs or "input_ids" not in inputs:
|
|
@@ -86,18 +83,23 @@ def chat(msg: Message):
|
|
| 86 |
|
| 87 |
inputs = inputs.to(model.device)
|
| 88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
with torch.no_grad():
|
| 90 |
-
output = model.generate(
|
| 91 |
-
**inputs,
|
| 92 |
-
max_new_tokens=128,
|
| 93 |
-
do_sample=USE_SAMPLING,
|
| 94 |
-
temperature=0.7 if USE_SAMPLING else None,
|
| 95 |
-
top_p=0.9 if USE_SAMPLING else None,
|
| 96 |
-
top_k=50 if USE_SAMPLING else None,
|
| 97 |
-
return_dict_in_generate=True,
|
| 98 |
-
output_scores=True,
|
| 99 |
-
suppress_tokens=[tokenizer.pad_token_id]
|
| 100 |
-
)
|
| 101 |
|
| 102 |
decoded = tokenizer.decode(output.sequences[0], skip_special_tokens=True)
|
| 103 |
answer = decoded[len(prompt):].strip()
|
|
@@ -130,37 +132,16 @@ def setup_model():
|
|
| 130 |
global model, tokenizer
|
| 131 |
try:
|
| 132 |
device, supports_bf16 = detect_env()
|
| 133 |
-
dtype = torch.
|
|
|
|
| 134 |
log(f"🧠 Ortam: {device.upper()}, dtype: {dtype}")
|
|
|
|
| 135 |
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
repo_id=FINE_TUNE_REPO,
|
| 140 |
-
filename=FINE_TUNE_ZIP,
|
| 141 |
-
repo_type="model",
|
| 142 |
-
token=HF_TOKEN
|
| 143 |
-
)
|
| 144 |
-
extract_path = "/app/extracted"
|
| 145 |
-
os.makedirs(extract_path, exist_ok=True)
|
| 146 |
-
with zipfile.ZipFile(zip_path, "r") as zip_ref:
|
| 147 |
-
zip_ref.extractall(extract_path)
|
| 148 |
-
|
| 149 |
-
tokenizer = AutoTokenizer.from_pretrained(os.path.join(extract_path, "output"))
|
| 150 |
-
if tokenizer.pad_token is None:
|
| 151 |
-
tokenizer.pad_token = tokenizer.eos_token
|
| 152 |
-
|
| 153 |
-
base = AutoModelForCausalLM.from_pretrained(MODEL_BASE, torch_dtype=dtype).to(device)
|
| 154 |
-
peft = PeftModel.from_pretrained(base, os.path.join(extract_path, "output"))
|
| 155 |
-
model = peft.model.to(device)
|
| 156 |
-
|
| 157 |
-
else:
|
| 158 |
-
log("🧪 Sadece ana model yüklenecek...")
|
| 159 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_BASE, use_fast=False)
|
| 160 |
-
if tokenizer.pad_token is None:
|
| 161 |
-
tokenizer.pad_token = tokenizer.eos_token
|
| 162 |
-
model = AutoModelForCausalLM.from_pretrained(MODEL_BASE, torch_dtype=dtype).to(device)
|
| 163 |
|
|
|
|
| 164 |
model.eval()
|
| 165 |
log("✅ Model başarıyla yüklendi.")
|
| 166 |
|
|
|
|
| 1 |
+
import os, torch, threading, uvicorn, time, traceback
|
| 2 |
from fastapi import FastAPI
|
| 3 |
from fastapi.responses import HTMLResponse, JSONResponse
|
| 4 |
from pydantic import BaseModel
|
| 5 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
|
|
|
| 6 |
from datetime import datetime
|
| 7 |
import random
|
| 8 |
|
| 9 |
# === Sabitler ===
|
| 10 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 11 |
MODEL_BASE = "mistralai/Mistral-7B-Instruct-v0.2"
|
| 12 |
+
USE_FINE_TUNE = False
|
|
|
|
|
|
|
| 13 |
USE_SAMPLING = False
|
| 14 |
CONFIDENCE_THRESHOLD = -1.5
|
| 15 |
FALLBACK_ANSWERS = [
|
|
|
|
| 43 |
<html>
|
| 44 |
<body>
|
| 45 |
<h2>Mistral 7B Chat</h2>
|
| 46 |
+
<textarea id=\"input\" rows=\"4\" cols=\"60\" placeholder=\"Write your instruction...\"></textarea><br>
|
| 47 |
<button onclick=\"send()\">Gönder</button>
|
| 48 |
<pre id=\"output\"></pre>
|
| 49 |
<script>
|
|
|
|
| 73 |
if not user_input:
|
| 74 |
return {"error": "Boş giriş"}
|
| 75 |
|
| 76 |
+
# ✅ Ana modelin beklediği instruct formatı
|
| 77 |
+
prompt = f"### Instruction:\n{user_input}\n\n### Response:"
|
| 78 |
inputs = tokenizer(prompt, return_tensors="pt")
|
| 79 |
|
| 80 |
if not inputs or "input_ids" not in inputs:
|
|
|
|
| 83 |
|
| 84 |
inputs = inputs.to(model.device)
|
| 85 |
|
| 86 |
+
generate_args = {
|
| 87 |
+
"max_new_tokens": 128,
|
| 88 |
+
"return_dict_in_generate": True,
|
| 89 |
+
"output_scores": True,
|
| 90 |
+
"suppress_tokens": [tokenizer.pad_token_id],
|
| 91 |
+
"do_sample": USE_SAMPLING
|
| 92 |
+
}
|
| 93 |
+
|
| 94 |
+
if USE_SAMPLING:
|
| 95 |
+
generate_args.update({
|
| 96 |
+
"temperature": 0.7,
|
| 97 |
+
"top_p": 0.9,
|
| 98 |
+
"top_k": 50
|
| 99 |
+
})
|
| 100 |
+
|
| 101 |
with torch.no_grad():
|
| 102 |
+
output = model.generate(**inputs, **generate_args)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
decoded = tokenizer.decode(output.sequences[0], skip_special_tokens=True)
|
| 105 |
answer = decoded[len(prompt):].strip()
|
|
|
|
| 132 |
global model, tokenizer
|
| 133 |
try:
|
| 134 |
device, supports_bf16 = detect_env()
|
| 135 |
+
dtype = torch.float32 # daha kararlı
|
| 136 |
+
|
| 137 |
log(f"🧠 Ortam: {device.upper()}, dtype: {dtype}")
|
| 138 |
+
log("🧪 Sadece ana model yüklenecek...")
|
| 139 |
|
| 140 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_BASE, use_fast=False)
|
| 141 |
+
if tokenizer.pad_token is None:
|
| 142 |
+
tokenizer.pad_token = tokenizer.eos_token
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_BASE, torch_dtype=dtype).to(device)
|
| 145 |
model.eval()
|
| 146 |
log("✅ Model başarıyla yüklendi.")
|
| 147 |
|