Update inference_test_turkcell_with_intents.py
Browse files
inference_test_turkcell_with_intents.py
CHANGED
|
@@ -6,10 +6,6 @@ from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForSequen
|
|
| 6 |
from peft import PeftModel
|
| 7 |
from datasets import Dataset
|
| 8 |
from datetime import datetime
|
| 9 |
-
import faiss
|
| 10 |
-
import numpy as np
|
| 11 |
-
import pandas as pd
|
| 12 |
-
from sentence_transformers import SentenceTransformer
|
| 13 |
|
| 14 |
# === Ortam
|
| 15 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
@@ -23,10 +19,6 @@ USE_FINE_TUNE = False
|
|
| 23 |
FINE_TUNE_REPO = "UcsTurkey/trained-zips"
|
| 24 |
FINE_TUNE_ZIP = "trained_model_000_009.zip"
|
| 25 |
USE_SAMPLING = False
|
| 26 |
-
USE_RAG = True
|
| 27 |
-
RAG_INDEX_PATH = "/app/faiss/faiss_index_000_100.index"
|
| 28 |
-
RAG_METADATA_PATH = "/app/faiss/faiss_index_000_100_metadata.parquet"
|
| 29 |
-
RAG_EMBEDDING_MODEL_NAME = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
|
| 30 |
INTENT_CONFIDENCE_THRESHOLD = 0.5
|
| 31 |
LLM_CONFIDENCE_THRESHOLD = 0.2
|
| 32 |
TRAIN_CONFIDENCE_THRESHOLD = 0.7
|
|
@@ -36,22 +28,19 @@ FALLBACK_ANSWERS = [
|
|
| 36 |
"Bu soruya şu an yanıt veremiyorum."
|
| 37 |
]
|
| 38 |
|
| 39 |
-
# === Global Değişkenler
|
| 40 |
INTENT_MODEL_PATH = "intent_model"
|
| 41 |
INTENT_MODEL_ID = "dbmdz/bert-base-turkish-cased"
|
| 42 |
INTENT_MODEL = None
|
| 43 |
INTENT_TOKENIZER = None
|
| 44 |
LABEL2ID = {}
|
| 45 |
INTENT_DEFINITIONS = {}
|
| 46 |
-
model = None
|
| 47 |
-
tokenizer = None
|
| 48 |
-
eos_token_id = None
|
| 49 |
-
faiss_index = None
|
| 50 |
-
rag_metadata = None
|
| 51 |
-
rag_embedder = None
|
| 52 |
|
| 53 |
# === FastAPI
|
| 54 |
app = FastAPI()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
class Message(BaseModel):
|
| 57 |
user_input: str
|
|
@@ -105,6 +94,7 @@ def background_training(intents):
|
|
| 105 |
for ex in intent["examples"]:
|
| 106 |
texts.append(ex)
|
| 107 |
labels.append(idx)
|
|
|
|
| 108 |
dataset = Dataset.from_dict({"text": texts, "label": labels})
|
| 109 |
tokenizer = AutoTokenizer.from_pretrained(INTENT_MODEL_ID)
|
| 110 |
config = AutoConfig.from_pretrained(INTENT_MODEL_ID)
|
|
@@ -118,6 +108,7 @@ def background_training(intents):
|
|
| 118 |
tokenized_data["input_ids"].append(out["input_ids"])
|
| 119 |
tokenized_data["attention_mask"].append(out["attention_mask"])
|
| 120 |
tokenized_data["label"].append(row["label"])
|
|
|
|
| 121 |
tokenized = Dataset.from_dict(tokenized_data)
|
| 122 |
tokenized.set_format(type="torch", columns=["input_ids", "attention_mask", "label"])
|
| 123 |
|
|
@@ -131,6 +122,7 @@ def background_training(intents):
|
|
| 131 |
)
|
| 132 |
trainer.train()
|
| 133 |
|
|
|
|
| 134 |
log("🔧 Başarı raporu üretiliyor...")
|
| 135 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 136 |
model.to(device)
|
|
@@ -142,7 +134,8 @@ def background_training(intents):
|
|
| 142 |
predictions = outputs.logits.argmax(dim=-1).tolist()
|
| 143 |
|
| 144 |
actuals = tokenized["label"]
|
| 145 |
-
counts
|
|
|
|
| 146 |
for pred, actual in zip(predictions, actuals):
|
| 147 |
intent = list(label2id.keys())[list(label2id.values()).index(actual)]
|
| 148 |
counts[intent] = counts.get(intent, 0) + 1
|
|
@@ -154,13 +147,16 @@ def background_training(intents):
|
|
| 154 |
if accuracy < TRAIN_CONFIDENCE_THRESHOLD or total < 5:
|
| 155 |
log(f"⚠️ Yetersiz performanslı intent: '{intent}' — Doğruluk: {accuracy:.2f}, Örnek: {total}")
|
| 156 |
|
|
|
|
| 157 |
if os.path.exists(INTENT_MODEL_PATH):
|
| 158 |
shutil.rmtree(INTENT_MODEL_PATH)
|
| 159 |
model.save_pretrained(INTENT_MODEL_PATH)
|
| 160 |
tokenizer.save_pretrained(INTENT_MODEL_PATH)
|
| 161 |
with open(os.path.join(INTENT_MODEL_PATH, "label2id.json"), "w") as f:
|
| 162 |
json.dump(label2id, f)
|
|
|
|
| 163 |
log("✅ Intent eğitimi tamamlandı ve model kaydedildi.")
|
|
|
|
| 164 |
except Exception as e:
|
| 165 |
log(f"❌ Intent eğitimi hatası: {e}")
|
| 166 |
traceback.print_exc()
|
|
@@ -191,6 +187,7 @@ async def generate_response(text):
|
|
| 191 |
eos_token = tokenizer("<|im_end|>", add_special_tokens=False)["input_ids"][0]
|
| 192 |
input_ids = encodeds.to(model.device)
|
| 193 |
attention_mask = (input_ids != tokenizer.pad_token_id).long()
|
|
|
|
| 194 |
with torch.no_grad():
|
| 195 |
output = model.generate(
|
| 196 |
input_ids=input_ids,
|
|
@@ -202,11 +199,14 @@ async def generate_response(text):
|
|
| 202 |
return_dict_in_generate=True,
|
| 203 |
output_scores=True
|
| 204 |
)
|
| 205 |
-
|
| 206 |
if not USE_SAMPLING:
|
| 207 |
scores = torch.stack(output.scores, dim=1)
|
| 208 |
probs = torch.nn.functional.softmax(scores[0], dim=-1)
|
| 209 |
top_conf = probs.max().item()
|
|
|
|
|
|
|
|
|
|
| 210 |
decoded = tokenizer.decode(output.sequences[0], skip_special_tokens=True).strip()
|
| 211 |
for tag in ["assistant", "<|im_start|>assistant"]:
|
| 212 |
start = decoded.find(tag)
|
|
@@ -215,40 +215,45 @@ async def generate_response(text):
|
|
| 215 |
break
|
| 216 |
return decoded, top_conf
|
| 217 |
|
| 218 |
-
def
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
|
| 226 |
@app.post("/chat")
|
| 227 |
async def chat(msg: Message):
|
| 228 |
user_input = msg.user_input.strip()
|
| 229 |
try:
|
|
|
|
|
|
|
|
|
|
| 230 |
if INTENT_MODEL:
|
| 231 |
intent_task = asyncio.create_task(detect_intent(user_input))
|
| 232 |
response_task = asyncio.create_task(generate_response(user_input))
|
| 233 |
intent, intent_conf = await intent_task
|
| 234 |
log(f"🎯 Intent: {intent} (conf={intent_conf:.2f})")
|
| 235 |
if intent_conf > INTENT_CONFIDENCE_THRESHOLD and intent in INTENT_DEFINITIONS:
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
return {"response": random.choice(FALLBACK_ANSWERS)}
|
| 244 |
-
return {"response": response}
|
| 245 |
else:
|
| 246 |
response, response_conf = await generate_response(user_input)
|
| 247 |
if response_conf is not None and response_conf < LLM_CONFIDENCE_THRESHOLD:
|
| 248 |
-
if USE_RAG:
|
| 249 |
-
rag_result = search_rag(user_input)
|
| 250 |
-
if rag_result:
|
| 251 |
-
return {"response": rag_result}
|
| 252 |
return {"response": random.choice(FALLBACK_ANSWERS)}
|
| 253 |
return {"response": response}
|
| 254 |
except Exception as e:
|
|
@@ -260,27 +265,25 @@ def log(message):
|
|
| 260 |
print(f"[{timestamp}] {message}", flush=True)
|
| 261 |
|
| 262 |
def setup_model():
|
| 263 |
-
global model, tokenizer, eos_token_id
|
| 264 |
try:
|
| 265 |
log("🧠 setup_model() başladı")
|
| 266 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 267 |
log(f"📡 Kullanılan cihaz: {device}")
|
| 268 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_BASE, use_fast=False)
|
|
|
|
| 269 |
model = AutoModelForCausalLM.from_pretrained(MODEL_BASE, torch_dtype=torch.float32).to(device)
|
|
|
|
| 270 |
tokenizer.pad_token = tokenizer.pad_token or tokenizer.eos_token
|
| 271 |
model.config.pad_token_id = tokenizer.pad_token_id
|
| 272 |
eos_token_id = tokenizer("<|im_end|>", add_special_tokens=False)["input_ids"][0]
|
| 273 |
model.eval()
|
| 274 |
-
log("✅ Ana model
|
|
|
|
| 275 |
_ = AutoTokenizer.from_pretrained(INTENT_MODEL_ID)
|
| 276 |
_ = AutoModelForSequenceClassification.from_pretrained(INTENT_MODEL_ID)
|
| 277 |
log("✅ Intent modeli önbelleğe alındı.")
|
| 278 |
-
|
| 279 |
-
log("📥 FAISS index yükleniyor...")
|
| 280 |
-
faiss_index = faiss.read_index(RAG_INDEX_PATH)
|
| 281 |
-
rag_metadata = pd.read_parquet(RAG_METADATA_PATH)
|
| 282 |
-
rag_embedder = SentenceTransformer(RAG_EMBEDDING_MODEL_NAME)
|
| 283 |
-
log("✅ FAISS index ve metadata yüklendi.")
|
| 284 |
except Exception as e:
|
| 285 |
log(f"❌ setup_model() hatası: {e}")
|
| 286 |
traceback.print_exc()
|
|
|
|
| 6 |
from peft import PeftModel
|
| 7 |
from datasets import Dataset
|
| 8 |
from datetime import datetime
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# === Ortam
|
| 11 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
|
| 19 |
FINE_TUNE_REPO = "UcsTurkey/trained-zips"
|
| 20 |
FINE_TUNE_ZIP = "trained_model_000_009.zip"
|
| 21 |
USE_SAMPLING = False
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
INTENT_CONFIDENCE_THRESHOLD = 0.5
|
| 23 |
LLM_CONFIDENCE_THRESHOLD = 0.2
|
| 24 |
TRAIN_CONFIDENCE_THRESHOLD = 0.7
|
|
|
|
| 28 |
"Bu soruya şu an yanıt veremiyorum."
|
| 29 |
]
|
| 30 |
|
|
|
|
| 31 |
INTENT_MODEL_PATH = "intent_model"
|
| 32 |
INTENT_MODEL_ID = "dbmdz/bert-base-turkish-cased"
|
| 33 |
INTENT_MODEL = None
|
| 34 |
INTENT_TOKENIZER = None
|
| 35 |
LABEL2ID = {}
|
| 36 |
INTENT_DEFINITIONS = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
# === FastAPI
|
| 39 |
app = FastAPI()
|
| 40 |
+
chat_history = []
|
| 41 |
+
model = None
|
| 42 |
+
tokenizer = None
|
| 43 |
+
eos_token_id = None
|
| 44 |
|
| 45 |
class Message(BaseModel):
|
| 46 |
user_input: str
|
|
|
|
| 94 |
for ex in intent["examples"]:
|
| 95 |
texts.append(ex)
|
| 96 |
labels.append(idx)
|
| 97 |
+
|
| 98 |
dataset = Dataset.from_dict({"text": texts, "label": labels})
|
| 99 |
tokenizer = AutoTokenizer.from_pretrained(INTENT_MODEL_ID)
|
| 100 |
config = AutoConfig.from_pretrained(INTENT_MODEL_ID)
|
|
|
|
| 108 |
tokenized_data["input_ids"].append(out["input_ids"])
|
| 109 |
tokenized_data["attention_mask"].append(out["attention_mask"])
|
| 110 |
tokenized_data["label"].append(row["label"])
|
| 111 |
+
|
| 112 |
tokenized = Dataset.from_dict(tokenized_data)
|
| 113 |
tokenized.set_format(type="torch", columns=["input_ids", "attention_mask", "label"])
|
| 114 |
|
|
|
|
| 122 |
)
|
| 123 |
trainer.train()
|
| 124 |
|
| 125 |
+
# ✅ Başarı raporu üret
|
| 126 |
log("🔧 Başarı raporu üretiliyor...")
|
| 127 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 128 |
model.to(device)
|
|
|
|
| 134 |
predictions = outputs.logits.argmax(dim=-1).tolist()
|
| 135 |
|
| 136 |
actuals = tokenized["label"]
|
| 137 |
+
counts = {}
|
| 138 |
+
correct = {}
|
| 139 |
for pred, actual in zip(predictions, actuals):
|
| 140 |
intent = list(label2id.keys())[list(label2id.values()).index(actual)]
|
| 141 |
counts[intent] = counts.get(intent, 0) + 1
|
|
|
|
| 147 |
if accuracy < TRAIN_CONFIDENCE_THRESHOLD or total < 5:
|
| 148 |
log(f"⚠️ Yetersiz performanslı intent: '{intent}' — Doğruluk: {accuracy:.2f}, Örnek: {total}")
|
| 149 |
|
| 150 |
+
log("📦 Intent modeli eğitimi kaydediliyor...")
|
| 151 |
if os.path.exists(INTENT_MODEL_PATH):
|
| 152 |
shutil.rmtree(INTENT_MODEL_PATH)
|
| 153 |
model.save_pretrained(INTENT_MODEL_PATH)
|
| 154 |
tokenizer.save_pretrained(INTENT_MODEL_PATH)
|
| 155 |
with open(os.path.join(INTENT_MODEL_PATH, "label2id.json"), "w") as f:
|
| 156 |
json.dump(label2id, f)
|
| 157 |
+
|
| 158 |
log("✅ Intent eğitimi tamamlandı ve model kaydedildi.")
|
| 159 |
+
|
| 160 |
except Exception as e:
|
| 161 |
log(f"❌ Intent eğitimi hatası: {e}")
|
| 162 |
traceback.print_exc()
|
|
|
|
| 187 |
eos_token = tokenizer("<|im_end|>", add_special_tokens=False)["input_ids"][0]
|
| 188 |
input_ids = encodeds.to(model.device)
|
| 189 |
attention_mask = (input_ids != tokenizer.pad_token_id).long()
|
| 190 |
+
|
| 191 |
with torch.no_grad():
|
| 192 |
output = model.generate(
|
| 193 |
input_ids=input_ids,
|
|
|
|
| 199 |
return_dict_in_generate=True,
|
| 200 |
output_scores=True
|
| 201 |
)
|
| 202 |
+
|
| 203 |
if not USE_SAMPLING:
|
| 204 |
scores = torch.stack(output.scores, dim=1)
|
| 205 |
probs = torch.nn.functional.softmax(scores[0], dim=-1)
|
| 206 |
top_conf = probs.max().item()
|
| 207 |
+
else:
|
| 208 |
+
top_conf = None
|
| 209 |
+
|
| 210 |
decoded = tokenizer.decode(output.sequences[0], skip_special_tokens=True).strip()
|
| 211 |
for tag in ["assistant", "<|im_start|>assistant"]:
|
| 212 |
start = decoded.find(tag)
|
|
|
|
| 215 |
break
|
| 216 |
return decoded, top_conf
|
| 217 |
|
| 218 |
+
def extract_parameters(variables_list, user_input):
|
| 219 |
+
for pattern in variables_list:
|
| 220 |
+
regex = re.sub(r"(\w+):\{(.+?)\}", r"(?P<\1>.+?)", pattern)
|
| 221 |
+
match = re.match(regex, user_input)
|
| 222 |
+
if match:
|
| 223 |
+
return [{"key": k, "value": v} for k, v in match.groupdict().items()]
|
| 224 |
+
return []
|
| 225 |
+
|
| 226 |
+
def execute_intent(intent_name, user_input):
|
| 227 |
+
if intent_name in INTENT_DEFINITIONS:
|
| 228 |
+
definition = INTENT_DEFINITIONS[intent_name]
|
| 229 |
+
variables = extract_parameters(definition.get("variables", []), user_input)
|
| 230 |
+
log(f"🚀 execute_intent('{intent_name}', {variables})")
|
| 231 |
+
return {"intent": intent_name, "parameters": variables}
|
| 232 |
+
return {"intent": intent_name, "parameters": []}
|
| 233 |
|
| 234 |
@app.post("/chat")
|
| 235 |
async def chat(msg: Message):
|
| 236 |
user_input = msg.user_input.strip()
|
| 237 |
try:
|
| 238 |
+
if model is None or tokenizer is None:
|
| 239 |
+
return {"error": "Model yüklenmedi."}
|
| 240 |
+
|
| 241 |
if INTENT_MODEL:
|
| 242 |
intent_task = asyncio.create_task(detect_intent(user_input))
|
| 243 |
response_task = asyncio.create_task(generate_response(user_input))
|
| 244 |
intent, intent_conf = await intent_task
|
| 245 |
log(f"🎯 Intent: {intent} (conf={intent_conf:.2f})")
|
| 246 |
if intent_conf > INTENT_CONFIDENCE_THRESHOLD and intent in INTENT_DEFINITIONS:
|
| 247 |
+
result = execute_intent(intent, user_input)
|
| 248 |
+
return result
|
| 249 |
+
else:
|
| 250 |
+
response, response_conf = await response_task
|
| 251 |
+
if response_conf is not None and response_conf < LLM_CONFIDENCE_THRESHOLD:
|
| 252 |
+
return {"response": random.choice(FALLBACK_ANSWERS)}
|
| 253 |
+
return {"response": response}
|
|
|
|
|
|
|
| 254 |
else:
|
| 255 |
response, response_conf = await generate_response(user_input)
|
| 256 |
if response_conf is not None and response_conf < LLM_CONFIDENCE_THRESHOLD:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 257 |
return {"response": random.choice(FALLBACK_ANSWERS)}
|
| 258 |
return {"response": response}
|
| 259 |
except Exception as e:
|
|
|
|
| 265 |
print(f"[{timestamp}] {message}", flush=True)
|
| 266 |
|
| 267 |
def setup_model():
|
| 268 |
+
global model, tokenizer, eos_token_id
|
| 269 |
try:
|
| 270 |
log("🧠 setup_model() başladı")
|
| 271 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 272 |
log(f"📡 Kullanılan cihaz: {device}")
|
| 273 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_BASE, use_fast=False)
|
| 274 |
+
log("📦 Tokenizer yüklendi. Ana model indiriliyor...")
|
| 275 |
model = AutoModelForCausalLM.from_pretrained(MODEL_BASE, torch_dtype=torch.float32).to(device)
|
| 276 |
+
log("📦 Ana model indirildi ve yüklendi. eval() çağırılıyor...")
|
| 277 |
tokenizer.pad_token = tokenizer.pad_token or tokenizer.eos_token
|
| 278 |
model.config.pad_token_id = tokenizer.pad_token_id
|
| 279 |
eos_token_id = tokenizer("<|im_end|>", add_special_tokens=False)["input_ids"][0]
|
| 280 |
model.eval()
|
| 281 |
+
log("✅ Ana model eval() çağrıldı")
|
| 282 |
+
log(f"📦 Intent modeli indiriliyor: {INTENT_MODEL_ID}")
|
| 283 |
_ = AutoTokenizer.from_pretrained(INTENT_MODEL_ID)
|
| 284 |
_ = AutoModelForSequenceClassification.from_pretrained(INTENT_MODEL_ID)
|
| 285 |
log("✅ Intent modeli önbelleğe alındı.")
|
| 286 |
+
log("✔️ Model başarıyla yüklendi ve sohbet için hazır.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 287 |
except Exception as e:
|
| 288 |
log(f"❌ setup_model() hatası: {e}")
|
| 289 |
traceback.print_exc()
|