Update train_lora_mistral.py
Browse files- train_lora_mistral.py +142 -0
train_lora_mistral.py
CHANGED
|
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys, os, zipfile, shutil, time, traceback, threading, uvicorn
|
| 2 |
+
from fastapi import FastAPI
|
| 3 |
+
from fastapi.responses import JSONResponse
|
| 4 |
+
from datetime import datetime
|
| 5 |
+
from datasets import load_dataset
|
| 6 |
+
from huggingface_hub import HfApi
|
| 7 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer
|
| 8 |
+
from peft import get_peft_model, LoraConfig, TaskType
|
| 9 |
+
import torch
|
| 10 |
+
|
| 11 |
+
# === Sabitler ===
|
| 12 |
+
START_NUMBER = 0
|
| 13 |
+
END_NUMBER = 9
|
| 14 |
+
MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.2"
|
| 15 |
+
TOKENIZED_DATASET_ID = "UcsTurkey/turkish-general-culture-tokenized"
|
| 16 |
+
ZIP_UPLOAD_REPO = "UcsTurkey/trained-zips"
|
| 17 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 18 |
+
BATCH_SIZE = 1
|
| 19 |
+
EPOCHS = 2
|
| 20 |
+
MAX_LENGTH = 2048
|
| 21 |
+
OUTPUT_DIR = "/data/output"
|
| 22 |
+
ZIP_FOLDER = "/data/zip_temp"
|
| 23 |
+
zip_name = f"trained_model_{START_NUMBER:03d}_{END_NUMBER:03d}.zip"
|
| 24 |
+
ZIP_PATH = os.path.join(ZIP_FOLDER, zip_name)
|
| 25 |
+
|
| 26 |
+
# === Health check
|
| 27 |
+
app = FastAPI()
|
| 28 |
+
|
| 29 |
+
@app.get("/")
|
| 30 |
+
def health():
|
| 31 |
+
return JSONResponse(content={"status": "ok"})
|
| 32 |
+
|
| 33 |
+
def run_health_server():
|
| 34 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
| 35 |
+
|
| 36 |
+
threading.Thread(target=run_health_server, daemon=True).start()
|
| 37 |
+
|
| 38 |
+
# === Log
|
| 39 |
+
def log(message):
|
| 40 |
+
timestamp = datetime.now().strftime("%H:%M:%S")
|
| 41 |
+
print(f"[{timestamp}] {message}")
|
| 42 |
+
sys.stdout.flush()
|
| 43 |
+
|
| 44 |
+
# === Eğitim Başlıyor
|
| 45 |
+
log("🛠️ Ortam hazırlanıyor...")
|
| 46 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 47 |
+
if tokenizer.pad_token is None:
|
| 48 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 49 |
+
|
| 50 |
+
log("🧠 Model indiriliyor...")
|
| 51 |
+
base_model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.bfloat16)
|
| 52 |
+
base_model.config.pad_token_id = tokenizer.pad_token_id
|
| 53 |
+
|
| 54 |
+
log("🎯 LoRA adapter uygulanıyor...")
|
| 55 |
+
peft_config = LoraConfig(
|
| 56 |
+
task_type=TaskType.CAUSAL_LM,
|
| 57 |
+
r=64, lora_alpha=16, lora_dropout=0.1,
|
| 58 |
+
bias="none", fan_in_fan_out=False
|
| 59 |
+
)
|
| 60 |
+
model = get_peft_model(base_model, peft_config)
|
| 61 |
+
model.print_trainable_parameters()
|
| 62 |
+
|
| 63 |
+
log("📦 Parquet dosyaları listeleniyor...")
|
| 64 |
+
api = HfApi()
|
| 65 |
+
files = api.list_repo_files(repo_id=TOKENIZED_DATASET_ID, repo_type="dataset", token=HF_TOKEN)
|
| 66 |
+
selected_files = sorted([f for f in files if f.startswith("chunk_") and f.endswith(".parquet")])[START_NUMBER:END_NUMBER+1]
|
| 67 |
+
if not selected_files:
|
| 68 |
+
log("⚠️ Parquet bulunamadı. Eğitim iptal.")
|
| 69 |
+
exit(0)
|
| 70 |
+
|
| 71 |
+
training_args = TrainingArguments(
|
| 72 |
+
output_dir=OUTPUT_DIR,
|
| 73 |
+
per_device_train_batch_size=BATCH_SIZE,
|
| 74 |
+
num_train_epochs=EPOCHS,
|
| 75 |
+
save_strategy="epoch",
|
| 76 |
+
save_total_limit=2,
|
| 77 |
+
learning_rate=2e-4,
|
| 78 |
+
disable_tqdm=True,
|
| 79 |
+
logging_strategy="steps",
|
| 80 |
+
logging_steps=10,
|
| 81 |
+
report_to=[],
|
| 82 |
+
bf16=True,
|
| 83 |
+
fp16=False
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
for file in selected_files:
|
| 87 |
+
try:
|
| 88 |
+
log(f"\n📄 Yükleniyor: {file}")
|
| 89 |
+
dataset = load_dataset(
|
| 90 |
+
path=TOKENIZED_DATASET_ID,
|
| 91 |
+
data_files={"train": file},
|
| 92 |
+
split="train",
|
| 93 |
+
token=HF_TOKEN
|
| 94 |
+
)
|
| 95 |
+
log(f"🔍 {len(dataset)} örnek")
|
| 96 |
+
if len(dataset) == 0:
|
| 97 |
+
continue
|
| 98 |
+
trainer = Trainer(model=model, args=training_args, train_dataset=dataset)
|
| 99 |
+
log("🚀 Eğitim başlıyor...")
|
| 100 |
+
trainer.train()
|
| 101 |
+
log("✅ Eğitim tamam.")
|
| 102 |
+
except Exception as e:
|
| 103 |
+
log(f"❌ Hata: {file} → {e}")
|
| 104 |
+
traceback.print_exc()
|
| 105 |
+
|
| 106 |
+
# === Zip
|
| 107 |
+
log("📦 Model zipleniyor...")
|
| 108 |
+
try:
|
| 109 |
+
tmp_dir = os.path.join(ZIP_FOLDER, "temp_save")
|
| 110 |
+
os.makedirs(tmp_dir, exist_ok=True)
|
| 111 |
+
model.save_pretrained(tmp_dir)
|
| 112 |
+
tokenizer.save_pretrained(tmp_dir)
|
| 113 |
+
|
| 114 |
+
with zipfile.ZipFile(ZIP_PATH, "w", zipfile.ZIP_DEFLATED) as zipf:
|
| 115 |
+
for root, _, files in os.walk(tmp_dir):
|
| 116 |
+
for file in files:
|
| 117 |
+
filepath = os.path.join(root, file)
|
| 118 |
+
arcname = os.path.relpath(filepath, tmp_dir)
|
| 119 |
+
zipf.write(filepath, arcname=os.path.join("output", arcname))
|
| 120 |
+
log(f"✅ Zip oluşturuldu: {ZIP_PATH}")
|
| 121 |
+
except Exception as e:
|
| 122 |
+
log(f"❌ Zipleme hatası: {e}")
|
| 123 |
+
traceback.print_exc()
|
| 124 |
+
|
| 125 |
+
# === Upload
|
| 126 |
+
try:
|
| 127 |
+
log("☁️ Hugging Face'e yükleniyor...")
|
| 128 |
+
api.upload_file(
|
| 129 |
+
path_or_fileobj=ZIP_PATH,
|
| 130 |
+
path_in_repo=zip_name,
|
| 131 |
+
repo_id=ZIP_UPLOAD_REPO,
|
| 132 |
+
repo_type="model",
|
| 133 |
+
token=HF_TOKEN
|
| 134 |
+
)
|
| 135 |
+
log("✅ Upload tamam.")
|
| 136 |
+
except Exception as e:
|
| 137 |
+
log(f"❌ Upload hatası: {e}")
|
| 138 |
+
traceback.print_exc()
|
| 139 |
+
|
| 140 |
+
log("⏸️ Eğitim tamamlandı. Servis bekleme modunda...")
|
| 141 |
+
while True:
|
| 142 |
+
time.sleep(60)
|