Umar1623 commited on
Commit
cd0003d
·
verified ·
1 Parent(s): 0a32aab

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +60 -20
README.md CHANGED
@@ -1,20 +1,60 @@
1
- ---
2
- title: MLP Visualizer
3
- emoji: 🚀
4
- colorFrom: red
5
- colorTo: red
6
- sdk: docker
7
- app_port: 8501
8
- tags:
9
- - streamlit
10
- pinned: false
11
- short_description: Deep Learning concepts
12
- license: mit
13
- ---
14
-
15
- # Welcome to Streamlit!
16
-
17
- Edit `/src/streamlit_app.py` to customize this app to your heart's desire. :heart:
18
-
19
- If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
20
- forums](https://discuss.streamlit.io).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Interactive MLP Learning Platform
3
+ emoji: 🧠
4
+ colorFrom: blue
5
+ colorTo: indigo
6
+ sdk: streamlit
7
+ sdk_version: 1.32.0
8
+ app_file: app.py
9
+ pinned: false
10
+ ---
11
+
12
+ # Interactive MLP Learning Platform
13
+
14
+ This is an interactive web application designed to help students learn about Multi-Layer Perceptrons (MLPs) and deep learning concepts. The application allows users to:
15
+
16
+ 1. Generate synthetic datasets with customizable features and classes
17
+ 2. Split data into training, validation, and test sets
18
+ 3. Design and visualize MLP architectures (including per-layer activation functions)
19
+ 4. Train MLPs and observe the learning process with real-time training and validation metrics
20
+ 5. Visualize the results and model performance, including:
21
+ - Training/validation loss and accuracy curves
22
+ - Weight and bias visualization
23
+ - Weight optimization over epochs
24
+ - Network architecture diagram
25
+ - Confusion matrix and classification metrics after testing
26
+
27
+ ## Setup Instructions
28
+
29
+ 1. Install the required dependencies:
30
+ ```bash
31
+ pip install -r requirements.txt
32
+ ```
33
+
34
+ 2. Run the Streamlit application:
35
+ ```bash
36
+ streamlit run app.py
37
+ ```
38
+
39
+ ## Features
40
+
41
+ - Interactive dataset generation and splitting
42
+ - Customizable MLP architecture (layers, nodes, activations)
43
+ - Real-time training and validation visualization
44
+ - Performance metrics and plots
45
+ - Weight and bias visualization
46
+ - Network architecture visualization
47
+ - Confusion matrix and classification report on test data
48
+
49
+ ## Usage
50
+
51
+ 1. Start by configuring your dataset parameters and data split
52
+ 2. Design your MLP architecture (choose layers, nodes, and activations)
53
+ 3. Confirm the network to visualize the architecture
54
+ 4. Train the model and observe both training and validation metrics
55
+ 5. Test the model on unseen data and analyze the confusion matrix and classification metrics
56
+
57
+ ## Requirements
58
+
59
+ - Python 3.8+
60
+ - See requirements.txt for package dependencies (including: streamlit, numpy, pandas, scikit-learn, matplotlib, torch, networkx, seaborn)