Spaces:
Sleeping
Sleeping
Commit
Β·
f3d6510
1
Parent(s):
538765f
[Init] Setup
Browse files- resume_agent.py +491 -0
resume_agent.py
ADDED
|
@@ -0,0 +1,491 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import re
|
| 3 |
+
from typing import Dict, List, Optional, Tuple
|
| 4 |
+
from dataclasses import dataclass
|
| 5 |
+
from abc import ABC, abstractmethod
|
| 6 |
+
import google.generativeai as genai
|
| 7 |
+
from datetime import datetime
|
| 8 |
+
|
| 9 |
+
# Configure Gemini API
|
| 10 |
+
genai.configure(api_key="YOUR_GEMINI_API_KEY")
|
| 11 |
+
|
| 12 |
+
@dataclass
|
| 13 |
+
class ResumeData:
|
| 14 |
+
"""Data structure to hold resume information"""
|
| 15 |
+
personal_info: Dict
|
| 16 |
+
summary: str
|
| 17 |
+
experiences: List[Dict]
|
| 18 |
+
skills: List[str]
|
| 19 |
+
education: List[Dict]
|
| 20 |
+
raw_text: str
|
| 21 |
+
|
| 22 |
+
@dataclass
|
| 23 |
+
class JobDescription:
|
| 24 |
+
"""Data structure for job descriptions"""
|
| 25 |
+
title: str
|
| 26 |
+
company: str
|
| 27 |
+
description: str
|
| 28 |
+
requirements: List[str]
|
| 29 |
+
keywords: List[str]
|
| 30 |
+
|
| 31 |
+
class Agent(ABC):
|
| 32 |
+
"""Base agent class"""
|
| 33 |
+
|
| 34 |
+
def __init__(self, model_name: str = "gemini-1.5-flash"):
|
| 35 |
+
self.model = genai.GenerativeModel(model_name)
|
| 36 |
+
|
| 37 |
+
@abstractmethod
|
| 38 |
+
def execute(self, *args, **kwargs):
|
| 39 |
+
pass
|
| 40 |
+
|
| 41 |
+
def generate_response(self, prompt: str) -> str:
|
| 42 |
+
"""Generate response using Gemini"""
|
| 43 |
+
try:
|
| 44 |
+
response = self.model.generate_content(prompt)
|
| 45 |
+
return response.text
|
| 46 |
+
except Exception as e:
|
| 47 |
+
return f"Error generating response: {str(e)}"
|
| 48 |
+
|
| 49 |
+
class SummaryAgent(Agent):
|
| 50 |
+
"""Agent responsible for creating compelling professional summaries"""
|
| 51 |
+
|
| 52 |
+
def execute(self, resume_data: ResumeData, job_desc: Optional[JobDescription] = None) -> str:
|
| 53 |
+
context = f"""
|
| 54 |
+
Personal Info: {resume_data.personal_info}
|
| 55 |
+
Experience: {resume_data.experiences}
|
| 56 |
+
Skills: {resume_data.skills}
|
| 57 |
+
Education: {resume_data.education}
|
| 58 |
+
"""
|
| 59 |
+
|
| 60 |
+
job_context = ""
|
| 61 |
+
if job_desc:
|
| 62 |
+
job_context = f"""
|
| 63 |
+
Target Job: {job_desc.title} at {job_desc.company}
|
| 64 |
+
Job Requirements: {job_desc.requirements}
|
| 65 |
+
"""
|
| 66 |
+
|
| 67 |
+
prompt = f"""
|
| 68 |
+
Create a compelling professional summary (2-3 sentences) based on this resume information:
|
| 69 |
+
{context}
|
| 70 |
+
|
| 71 |
+
{job_context}
|
| 72 |
+
|
| 73 |
+
Guidelines:
|
| 74 |
+
- Highlight unique value proposition
|
| 75 |
+
- Use action-oriented language
|
| 76 |
+
- Focus on achievements and impact
|
| 77 |
+
- Keep it concise and engaging
|
| 78 |
+
- If job description provided, align with role requirements
|
| 79 |
+
|
| 80 |
+
Return only the professional summary text.
|
| 81 |
+
"""
|
| 82 |
+
|
| 83 |
+
return self.generate_response(prompt)
|
| 84 |
+
|
| 85 |
+
class ExperienceMatchingAgent(Agent):
|
| 86 |
+
"""Agent for matching experiences to job descriptions"""
|
| 87 |
+
|
| 88 |
+
def execute(self, resume_data: ResumeData, job_desc: JobDescription) -> List[Dict]:
|
| 89 |
+
experiences_text = json.dumps(resume_data.experiences, indent=2)
|
| 90 |
+
|
| 91 |
+
prompt = f"""
|
| 92 |
+
Analyze these work experiences and rank them by relevance to the target job:
|
| 93 |
+
|
| 94 |
+
EXPERIENCES:
|
| 95 |
+
{experiences_text}
|
| 96 |
+
|
| 97 |
+
TARGET JOB:
|
| 98 |
+
Title: {job_desc.title}
|
| 99 |
+
Company: {job_desc.company}
|
| 100 |
+
Description: {job_desc.description}
|
| 101 |
+
Requirements: {job_desc.requirements}
|
| 102 |
+
|
| 103 |
+
For each experience, provide:
|
| 104 |
+
1. Relevance score (1-10)
|
| 105 |
+
2. Key matching points
|
| 106 |
+
3. Suggested improvements for better alignment
|
| 107 |
+
4. Recommended order for resume
|
| 108 |
+
|
| 109 |
+
Return as JSON format:
|
| 110 |
+
{{
|
| 111 |
+
"ranked_experiences": [
|
| 112 |
+
{{
|
| 113 |
+
"original_experience": {{...}},
|
| 114 |
+
"relevance_score": 8,
|
| 115 |
+
"matching_points": ["point1", "point2"],
|
| 116 |
+
"suggested_improvements": ["improvement1", "improvement2"],
|
| 117 |
+
"recommended_position": 1
|
| 118 |
+
}}
|
| 119 |
+
]
|
| 120 |
+
}}
|
| 121 |
+
"""
|
| 122 |
+
|
| 123 |
+
response = self.generate_response(prompt)
|
| 124 |
+
try:
|
| 125 |
+
return json.loads(response)
|
| 126 |
+
except json.JSONDecodeError:
|
| 127 |
+
return {"error": "Failed to parse experience matching results"}
|
| 128 |
+
|
| 129 |
+
class KeywordOptimizationAgent(Agent):
|
| 130 |
+
"""Agent for optimizing ATS keywords"""
|
| 131 |
+
|
| 132 |
+
def execute(self, resume_data: ResumeData, job_desc: JobDescription) -> Dict:
|
| 133 |
+
prompt = f"""
|
| 134 |
+
Analyze the resume and job description to optimize ATS keywords:
|
| 135 |
+
|
| 136 |
+
RESUME CONTENT:
|
| 137 |
+
Summary: {resume_data.summary}
|
| 138 |
+
Skills: {resume_data.skills}
|
| 139 |
+
Experiences: {json.dumps(resume_data.experiences)}
|
| 140 |
+
|
| 141 |
+
JOB DESCRIPTION:
|
| 142 |
+
{job_desc.description}
|
| 143 |
+
Requirements: {job_desc.requirements}
|
| 144 |
+
|
| 145 |
+
Provide:
|
| 146 |
+
1. Missing critical keywords from job description
|
| 147 |
+
2. Keyword density analysis
|
| 148 |
+
3. Suggested keyword placements
|
| 149 |
+
4. Industry-specific terms to include
|
| 150 |
+
5. ATS optimization score (1-100)
|
| 151 |
+
|
| 152 |
+
Return as JSON:
|
| 153 |
+
{{
|
| 154 |
+
"missing_keywords": ["keyword1", "keyword2"],
|
| 155 |
+
"current_keyword_density": {{"keyword": "frequency"}},
|
| 156 |
+
"suggested_placements": [
|
| 157 |
+
{{
|
| 158 |
+
"keyword": "Python",
|
| 159 |
+
"sections": ["skills", "experience"],
|
| 160 |
+
"context": "Add to technical skills section"
|
| 161 |
+
}}
|
| 162 |
+
],
|
| 163 |
+
"industry_terms": ["term1", "term2"],
|
| 164 |
+
"ats_score": 75,
|
| 165 |
+
"recommendations": ["rec1", "rec2"]
|
| 166 |
+
}}
|
| 167 |
+
"""
|
| 168 |
+
|
| 169 |
+
response = self.generate_response(prompt)
|
| 170 |
+
try:
|
| 171 |
+
return json.loads(response)
|
| 172 |
+
except json.JSONDecodeError:
|
| 173 |
+
return {"error": "Failed to parse keyword optimization results"}
|
| 174 |
+
|
| 175 |
+
class DesignAgent(Agent):
|
| 176 |
+
"""Agent for design and formatting suggestions"""
|
| 177 |
+
|
| 178 |
+
def execute(self, resume_data: ResumeData, job_desc: Optional[JobDescription] = None) -> Dict:
|
| 179 |
+
industry = job_desc.title.split()[0] if job_desc else "General"
|
| 180 |
+
|
| 181 |
+
prompt = f"""
|
| 182 |
+
Suggest design and formatting improvements for a {industry} professional's resume:
|
| 183 |
+
|
| 184 |
+
CURRENT RESUME STRUCTURE:
|
| 185 |
+
- Personal Info: {len(resume_data.personal_info)} fields
|
| 186 |
+
- Experiences: {len(resume_data.experiences)} positions
|
| 187 |
+
- Skills: {len(resume_data.skills)} skills listed
|
| 188 |
+
- Education: {len(resume_data.education)} entries
|
| 189 |
+
|
| 190 |
+
Consider:
|
| 191 |
+
1. Industry standards for {industry}
|
| 192 |
+
2. ATS-friendly formatting
|
| 193 |
+
3. Visual hierarchy and readability
|
| 194 |
+
4. Professional appearance
|
| 195 |
+
5. Length optimization
|
| 196 |
+
|
| 197 |
+
Return JSON with:
|
| 198 |
+
{{
|
| 199 |
+
"recommended_template": "template_name",
|
| 200 |
+
"layout_suggestions": ["suggestion1", "suggestion2"],
|
| 201 |
+
"formatting_rules": ["rule1", "rule2"],
|
| 202 |
+
"color_scheme": "color_description",
|
| 203 |
+
"typography": "font_recommendations",
|
| 204 |
+
"sections_order": ["section1", "section2", "section3"],
|
| 205 |
+
"design_tips": ["tip1", "tip2"]
|
| 206 |
+
}}
|
| 207 |
+
"""
|
| 208 |
+
|
| 209 |
+
response = self.generate_response(prompt)
|
| 210 |
+
try:
|
| 211 |
+
return json.loads(response)
|
| 212 |
+
except json.JSONDecodeError:
|
| 213 |
+
return {"error": "Failed to parse design suggestions"}
|
| 214 |
+
|
| 215 |
+
class EditingAgent(Agent):
|
| 216 |
+
"""Agent for grammar, punctuation, and content improvement"""
|
| 217 |
+
|
| 218 |
+
def execute(self, text: str) -> Dict:
|
| 219 |
+
prompt = f"""
|
| 220 |
+
Analyze this resume text for improvements:
|
| 221 |
+
|
| 222 |
+
TEXT TO REVIEW:
|
| 223 |
+
{text}
|
| 224 |
+
|
| 225 |
+
Check for:
|
| 226 |
+
1. Grammar and punctuation errors
|
| 227 |
+
2. Clarity and conciseness
|
| 228 |
+
3. Action verb usage
|
| 229 |
+
4. Quantifiable achievements
|
| 230 |
+
5. Professional tone
|
| 231 |
+
6. Consistency in formatting
|
| 232 |
+
|
| 233 |
+
Return JSON:
|
| 234 |
+
{{
|
| 235 |
+
"grammar_errors": [
|
| 236 |
+
{{
|
| 237 |
+
"original": "original text",
|
| 238 |
+
"corrected": "corrected text",
|
| 239 |
+
"explanation": "reason for change"
|
| 240 |
+
}}
|
| 241 |
+
],
|
| 242 |
+
"clarity_improvements": [
|
| 243 |
+
{{
|
| 244 |
+
"original": "original text",
|
| 245 |
+
"improved": "improved text",
|
| 246 |
+
"reason": "why it's better"
|
| 247 |
+
}}
|
| 248 |
+
],
|
| 249 |
+
"action_verb_suggestions": ["verb1", "verb2"],
|
| 250 |
+
"quantification_opportunities": ["opportunity1", "opportunity2"],
|
| 251 |
+
"overall_score": 85,
|
| 252 |
+
"summary_feedback": "Overall assessment"
|
| 253 |
+
}}
|
| 254 |
+
"""
|
| 255 |
+
|
| 256 |
+
response = self.generate_response(prompt)
|
| 257 |
+
try:
|
| 258 |
+
return json.loads(response)
|
| 259 |
+
except json.JSONDecodeError:
|
| 260 |
+
return {"error": "Failed to parse editing suggestions"}
|
| 261 |
+
|
| 262 |
+
class ResumeAgent:
|
| 263 |
+
"""Main orchestrating agent that coordinates all sub-agents"""
|
| 264 |
+
|
| 265 |
+
def __init__(self):
|
| 266 |
+
self.summary_agent = SummaryAgent()
|
| 267 |
+
self.experience_agent = ExperienceMatchingAgent()
|
| 268 |
+
self.keyword_agent = KeywordOptimizationAgent()
|
| 269 |
+
self.design_agent = DesignAgent()
|
| 270 |
+
self.editing_agent = EditingAgent()
|
| 271 |
+
|
| 272 |
+
def parse_resume(self, resume_text: str) -> ResumeData:
|
| 273 |
+
"""Simple resume parsing - can be enhanced with proper NLP"""
|
| 274 |
+
# This is a simplified parser - in production, you'd use more sophisticated parsing
|
| 275 |
+
lines = resume_text.split('\n')
|
| 276 |
+
|
| 277 |
+
# Extract basic sections (this is a simplified implementation)
|
| 278 |
+
personal_info = {"name": "John Doe", "email": "john@email.com"} # Placeholder
|
| 279 |
+
summary = ""
|
| 280 |
+
experiences = []
|
| 281 |
+
skills = []
|
| 282 |
+
education = []
|
| 283 |
+
|
| 284 |
+
# Simple pattern matching (enhance as needed)
|
| 285 |
+
current_section = None
|
| 286 |
+
for line in lines:
|
| 287 |
+
line = line.strip()
|
| 288 |
+
if re.match(r'(summary|profile|objective)', line.lower()):
|
| 289 |
+
current_section = 'summary'
|
| 290 |
+
elif re.match(r'(experience|work|employment)', line.lower()):
|
| 291 |
+
current_section = 'experience'
|
| 292 |
+
elif re.match(r'(skills|technical)', line.lower()):
|
| 293 |
+
current_section = 'skills'
|
| 294 |
+
elif re.match(r'(education|academic)', line.lower()):
|
| 295 |
+
current_section = 'education'
|
| 296 |
+
elif line and current_section:
|
| 297 |
+
if current_section == 'summary':
|
| 298 |
+
summary += line + " "
|
| 299 |
+
elif current_section == 'skills':
|
| 300 |
+
skills.extend([skill.strip() for skill in line.split(',')])
|
| 301 |
+
|
| 302 |
+
return ResumeData(
|
| 303 |
+
personal_info=personal_info,
|
| 304 |
+
summary=summary.strip(),
|
| 305 |
+
experiences=experiences,
|
| 306 |
+
skills=skills,
|
| 307 |
+
education=education,
|
| 308 |
+
raw_text=resume_text
|
| 309 |
+
)
|
| 310 |
+
|
| 311 |
+
def optimize_resume(self, resume_text: str, job_description: Optional[str] = None) -> Dict:
|
| 312 |
+
"""Main method to optimize resume using all agents"""
|
| 313 |
+
|
| 314 |
+
# Parse resume
|
| 315 |
+
resume_data = self.parse_resume(resume_text)
|
| 316 |
+
|
| 317 |
+
# Parse job description if provided
|
| 318 |
+
job_desc = None
|
| 319 |
+
if job_description:
|
| 320 |
+
job_desc = JobDescription(
|
| 321 |
+
title="Target Position",
|
| 322 |
+
company="Target Company",
|
| 323 |
+
description=job_description,
|
| 324 |
+
requirements=[req.strip() for req in job_description.split('.') if req.strip()],
|
| 325 |
+
keywords=[]
|
| 326 |
+
)
|
| 327 |
+
|
| 328 |
+
results = {
|
| 329 |
+
"timestamp": datetime.now().isoformat(),
|
| 330 |
+
"original_resume": resume_data.__dict__,
|
| 331 |
+
}
|
| 332 |
+
|
| 333 |
+
# Generate new summary
|
| 334 |
+
print("π Generating compelling summary...")
|
| 335 |
+
results["new_summary"] = self.summary_agent.execute(resume_data, job_desc)
|
| 336 |
+
|
| 337 |
+
# Match experiences to job
|
| 338 |
+
if job_desc:
|
| 339 |
+
print("π Analyzing experience relevance...")
|
| 340 |
+
results["experience_matching"] = self.experience_agent.execute(resume_data, job_desc)
|
| 341 |
+
|
| 342 |
+
print("π Optimizing keywords for ATS...")
|
| 343 |
+
results["keyword_optimization"] = self.keyword_agent.execute(resume_data, job_desc)
|
| 344 |
+
|
| 345 |
+
# Design suggestions
|
| 346 |
+
print("π Generating design recommendations...")
|
| 347 |
+
results["design_suggestions"] = self.design_agent.execute(resume_data, job_desc)
|
| 348 |
+
|
| 349 |
+
# Edit and improve
|
| 350 |
+
print("π Analyzing content for improvements...")
|
| 351 |
+
results["editing_suggestions"] = self.editing_agent.execute(resume_text)
|
| 352 |
+
|
| 353 |
+
return results
|
| 354 |
+
|
| 355 |
+
# File handling utilities
|
| 356 |
+
def read_file(file_path: str) -> str:
|
| 357 |
+
"""Read content from a file"""
|
| 358 |
+
try:
|
| 359 |
+
with open(file_path, 'r', encoding='utf-8') as file:
|
| 360 |
+
return file.read()
|
| 361 |
+
except FileNotFoundError:
|
| 362 |
+
print(f"β File not found: {file_path}")
|
| 363 |
+
return ""
|
| 364 |
+
except Exception as e:
|
| 365 |
+
print(f"β Error reading file: {str(e)}")
|
| 366 |
+
return ""
|
| 367 |
+
|
| 368 |
+
def get_sample_resume() -> str:
|
| 369 |
+
"""Return sample resume text"""
|
| 370 |
+
return """
|
| 371 |
+
John Doe
|
| 372 |
+
Software Engineer
|
| 373 |
+
john.doe@email.com
|
| 374 |
+
(555) 123-4567
|
| 375 |
+
|
| 376 |
+
SUMMARY
|
| 377 |
+
Experienced software developer with 5 years in web development and system design.
|
| 378 |
+
|
| 379 |
+
EXPERIENCE
|
| 380 |
+
Software Developer at TechCorp (2019-2024)
|
| 381 |
+
- Developed web applications using Python and JavaScript
|
| 382 |
+
- Worked with databases and APIs
|
| 383 |
+
- Collaborated with team members on agile projects
|
| 384 |
+
- Maintained code quality and performed code reviews
|
| 385 |
+
|
| 386 |
+
Senior Developer Intern at StartupXYZ (2018-2019)
|
| 387 |
+
- Built responsive web interfaces using React
|
| 388 |
+
- Integrated third-party APIs and services
|
| 389 |
+
- Participated in daily standups and sprint planning
|
| 390 |
+
|
| 391 |
+
SKILLS
|
| 392 |
+
Python, JavaScript, React, SQL, Git, Docker, AWS, REST APIs
|
| 393 |
+
|
| 394 |
+
EDUCATION
|
| 395 |
+
BS Computer Science, University XYZ (2019)
|
| 396 |
+
GPA: 3.7/4.0
|
| 397 |
+
"""
|
| 398 |
+
|
| 399 |
+
def get_sample_job_description() -> str:
|
| 400 |
+
"""Return sample job description"""
|
| 401 |
+
return """
|
| 402 |
+
Senior Python Developer position at InnovaTech
|
| 403 |
+
|
| 404 |
+
We are looking for an experienced Python developer with expertise in Django,
|
| 405 |
+
REST APIs, database optimization, and cloud technologies. The ideal candidate
|
| 406 |
+
should have 3+ years of experience, strong problem-solving skills, and
|
| 407 |
+
experience with AWS or Azure.
|
| 408 |
+
|
| 409 |
+
Requirements:
|
| 410 |
+
- 3+ years of Python development experience
|
| 411 |
+
- Strong knowledge of Django framework
|
| 412 |
+
- Experience with REST API development
|
| 413 |
+
- Database design and optimization skills
|
| 414 |
+
- Cloud platform experience (AWS/Azure)
|
| 415 |
+
- Git version control
|
| 416 |
+
- Agile development methodology
|
| 417 |
+
- Strong communication skills
|
| 418 |
+
"""
|
| 419 |
+
|
| 420 |
+
# Example usage and testing
|
| 421 |
+
def main():
|
| 422 |
+
"""Main function with file upload capability"""
|
| 423 |
+
|
| 424 |
+
print("π AI Resume Optimization Agent")
|
| 425 |
+
print("=" * 50)
|
| 426 |
+
|
| 427 |
+
# Get resume content
|
| 428 |
+
resume_file = input("π Enter resume file path (or press Enter for sample): ").strip()
|
| 429 |
+
if resume_file and resume_file != "":
|
| 430 |
+
resume_text = read_file(resume_file)
|
| 431 |
+
if not resume_text:
|
| 432 |
+
print("π Using sample resume instead...")
|
| 433 |
+
resume_text = get_sample_resume()
|
| 434 |
+
else:
|
| 435 |
+
print("π Using sample resume...")
|
| 436 |
+
resume_text = get_sample_resume()
|
| 437 |
+
|
| 438 |
+
# Get job description
|
| 439 |
+
job_file = input("πΌ Enter job description file path (or press Enter for sample): ").strip()
|
| 440 |
+
if job_file and job_file != "":
|
| 441 |
+
job_description = read_file(job_file)
|
| 442 |
+
if not job_description:
|
| 443 |
+
print("πΌ Using sample job description instead...")
|
| 444 |
+
job_description = get_sample_job_description()
|
| 445 |
+
else:
|
| 446 |
+
print("πΌ Using sample job description...")
|
| 447 |
+
job_description = get_sample_job_description()
|
| 448 |
+
|
| 449 |
+
# Initialize the agent
|
| 450 |
+
agent = ResumeAgent()
|
| 451 |
+
|
| 452 |
+
print("\nπ Starting Resume Optimization...")
|
| 453 |
+
print("=" * 50)
|
| 454 |
+
|
| 455 |
+
# Optimize resume
|
| 456 |
+
results = agent.optimize_resume(resume_text, job_description)
|
| 457 |
+
|
| 458 |
+
print("\nβ
Optimization Complete!")
|
| 459 |
+
print("=" * 50)
|
| 460 |
+
|
| 461 |
+
# Display results
|
| 462 |
+
print(f"\nπ NEW SUMMARY:")
|
| 463 |
+
print(results.get("new_summary", ""))
|
| 464 |
+
|
| 465 |
+
if "keyword_optimization" in results:
|
| 466 |
+
keyword_data = results["keyword_optimization"]
|
| 467 |
+
if isinstance(keyword_data, dict) and "ats_score" in keyword_data:
|
| 468 |
+
print(f"\nπ― ATS SCORE: {keyword_data['ats_score']}/100")
|
| 469 |
+
|
| 470 |
+
if "design_suggestions" in results:
|
| 471 |
+
design_data = results["design_suggestions"]
|
| 472 |
+
if isinstance(design_data, dict) and "recommended_template" in design_data:
|
| 473 |
+
print(f"\nπ¨ RECOMMENDED TEMPLATE: {design_data['recommended_template']}")
|
| 474 |
+
|
| 475 |
+
print(f"\nπ ANALYSIS COMPLETE")
|
| 476 |
+
print(f"Full results saved with timestamp: {results['timestamp']}")
|
| 477 |
+
|
| 478 |
+
# Save results to file
|
| 479 |
+
output_file = f"resume_optimization_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
|
| 480 |
+
try:
|
| 481 |
+
with open(output_file, 'w', encoding='utf-8') as f:
|
| 482 |
+
json.dump(results, f, indent=2, default=str)
|
| 483 |
+
print(f"πΎ Results saved to: {output_file}")
|
| 484 |
+
except Exception as e:
|
| 485 |
+
print(f"β Error saving results: {str(e)}")
|
| 486 |
+
|
| 487 |
+
return results
|
| 488 |
+
|
| 489 |
+
if __name__ == "__main__":
|
| 490 |
+
# Note: Replace "YOUR_GEMINI_API_KEY" with your actual API key
|
| 491 |
+
main()
|