Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -16,7 +16,6 @@ from model.cloth_masker import AutoMasker, vis_mask
|
|
| 16 |
from model.pipeline import CatVTONPipeline
|
| 17 |
from utils import init_weight_dtype, resize_and_crop, resize_and_padding
|
| 18 |
|
| 19 |
-
|
| 20 |
def parse_args():
|
| 21 |
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
| 22 |
parser.add_argument(
|
|
@@ -41,7 +40,6 @@ def parse_args():
|
|
| 41 |
default="resource/demo/output",
|
| 42 |
help="The output directory where the model predictions will be written.",
|
| 43 |
)
|
| 44 |
-
|
| 45 |
parser.add_argument(
|
| 46 |
"--width",
|
| 47 |
type=int,
|
|
@@ -103,7 +101,6 @@ def image_grid(imgs, rows, cols):
|
|
| 103 |
grid.paste(img, box=(i % cols * w, i // cols * h))
|
| 104 |
return grid
|
| 105 |
|
| 106 |
-
|
| 107 |
args = parse_args()
|
| 108 |
repo_path = snapshot_download(repo_id=args.resume_path)
|
| 109 |
# Pipeline
|
|
@@ -168,7 +165,6 @@ def submit_function(
|
|
| 168 |
mask = mask_processor.blur(mask, blur_factor=9)
|
| 169 |
|
| 170 |
# Inference
|
| 171 |
-
# try:
|
| 172 |
result_image = pipeline(
|
| 173 |
image=person_image,
|
| 174 |
condition_image=cloth_image,
|
|
@@ -177,10 +173,6 @@ def submit_function(
|
|
| 177 |
guidance_scale=guidance_scale,
|
| 178 |
generator=generator
|
| 179 |
)[0]
|
| 180 |
-
# except Exception as e:
|
| 181 |
-
# raise gr.Error(
|
| 182 |
-
# "An error occurred. Please try again later: {}".format(e)
|
| 183 |
-
# )
|
| 184 |
|
| 185 |
# Post-process
|
| 186 |
masked_person = vis_mask(person_image, mask)
|
|
@@ -202,136 +194,294 @@ def submit_function(
|
|
| 202 |
new_result_image.paste(result_image, (condition_width + 5, 0))
|
| 203 |
return new_result_image
|
| 204 |
|
| 205 |
-
|
| 206 |
def person_example_fn(image_path):
|
| 207 |
return image_path
|
| 208 |
|
| 209 |
-
|
| 210 |
css = """
|
| 211 |
-
footer {
|
| 212 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 213 |
}
|
| 214 |
-
"""
|
| 215 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
|
| 217 |
-
|
| 218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
with gr.Row():
|
| 221 |
with gr.Column(scale=1, min_width=350):
|
| 222 |
-
with gr.
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
interactive=True, label="Person Image", type="filepath"
|
| 230 |
-
)
|
| 231 |
-
|
| 232 |
-
with gr.Row():
|
| 233 |
-
with gr.Column(scale=1, min_width=230):
|
| 234 |
-
cloth_image = gr.Image(
|
| 235 |
-
interactive=True, label="Condition Image", type="filepath"
|
| 236 |
-
)
|
| 237 |
-
with gr.Column(scale=1, min_width=120):
|
| 238 |
-
gr.Markdown(
|
| 239 |
-
'<span style="color: #808080; font-size: small;">Two ways to provide Mask:<br>1. Upload the person image and use the `🖌️` above to draw the Mask (higher priority)<br>2. Select the `Try-On Cloth Type` to generate automatically </span>'
|
| 240 |
)
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
|
|
|
| 245 |
)
|
| 246 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
|
| 248 |
-
submit = gr.Button("
|
| 249 |
gr.Markdown(
|
| 250 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
)
|
| 252 |
|
| 253 |
-
gr.
|
| 254 |
-
'<span style="color: #808080; font-size: small;">Advanced options can adjust details:<br>1. `Inference Step` may enhance details;<br>2. `CFG` is highly correlated with saturation;<br>3. `Random seed` may improve pseudo-shadow.</span>'
|
| 255 |
-
)
|
| 256 |
-
with gr.Accordion("Advanced Options", open=False):
|
| 257 |
num_inference_steps = gr.Slider(
|
| 258 |
-
label="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 259 |
)
|
| 260 |
-
# Guidence Scale
|
| 261 |
guidance_scale = gr.Slider(
|
| 262 |
-
label="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
)
|
| 264 |
-
# Random Seed
|
| 265 |
seed = gr.Slider(
|
| 266 |
-
label="Seed",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 267 |
)
|
| 268 |
show_type = gr.Radio(
|
| 269 |
-
label="
|
| 270 |
choices=["result only", "input & result", "input & mask & result"],
|
| 271 |
value="input & mask & result",
|
|
|
|
| 272 |
)
|
| 273 |
-
|
| 274 |
with gr.Column(scale=2, min_width=500):
|
| 275 |
-
result_image = gr.Image(
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 332 |
|
| 333 |
image_path.change(
|
| 334 |
-
person_example_fn,
|
|
|
|
|
|
|
| 335 |
)
|
| 336 |
|
| 337 |
submit.click(
|
|
@@ -347,8 +497,21 @@ def app_gradio():
|
|
| 347 |
],
|
| 348 |
result_image,
|
| 349 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 350 |
demo.queue().launch(share=True, show_error=True)
|
| 351 |
|
| 352 |
-
|
| 353 |
if __name__ == "__main__":
|
| 354 |
-
app_gradio()
|
|
|
|
| 16 |
from model.pipeline import CatVTONPipeline
|
| 17 |
from utils import init_weight_dtype, resize_and_crop, resize_and_padding
|
| 18 |
|
|
|
|
| 19 |
def parse_args():
|
| 20 |
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
| 21 |
parser.add_argument(
|
|
|
|
| 40 |
default="resource/demo/output",
|
| 41 |
help="The output directory where the model predictions will be written.",
|
| 42 |
)
|
|
|
|
| 43 |
parser.add_argument(
|
| 44 |
"--width",
|
| 45 |
type=int,
|
|
|
|
| 101 |
grid.paste(img, box=(i % cols * w, i // cols * h))
|
| 102 |
return grid
|
| 103 |
|
|
|
|
| 104 |
args = parse_args()
|
| 105 |
repo_path = snapshot_download(repo_id=args.resume_path)
|
| 106 |
# Pipeline
|
|
|
|
| 165 |
mask = mask_processor.blur(mask, blur_factor=9)
|
| 166 |
|
| 167 |
# Inference
|
|
|
|
| 168 |
result_image = pipeline(
|
| 169 |
image=person_image,
|
| 170 |
condition_image=cloth_image,
|
|
|
|
| 173 |
guidance_scale=guidance_scale,
|
| 174 |
generator=generator
|
| 175 |
)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
|
| 177 |
# Post-process
|
| 178 |
masked_person = vis_mask(person_image, mask)
|
|
|
|
| 194 |
new_result_image.paste(result_image, (condition_width + 5, 0))
|
| 195 |
return new_result_image
|
| 196 |
|
|
|
|
| 197 |
def person_example_fn(image_path):
|
| 198 |
return image_path
|
| 199 |
|
| 200 |
+
# Custom CSS for enhanced visual appeal
|
| 201 |
css = """
|
| 202 |
+
footer {visibility: hidden}
|
| 203 |
+
|
| 204 |
+
/* Main container styling */
|
| 205 |
+
.gradio-container {
|
| 206 |
+
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
|
| 207 |
+
border-radius: 20px;
|
| 208 |
+
box-shadow: 0 8px 32px rgba(31, 38, 135, 0.15);
|
| 209 |
}
|
|
|
|
| 210 |
|
| 211 |
+
/* Header styling */
|
| 212 |
+
h1, h2, h3 {
|
| 213 |
+
color: #2c3e50;
|
| 214 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
| 215 |
+
text-shadow: 1px 1px 2px rgba(0,0,0,0.1);
|
| 216 |
+
}
|
| 217 |
|
| 218 |
+
/* Button styling */
|
| 219 |
+
button.primary-button {
|
| 220 |
+
background: linear-gradient(45deg, #4CAF50, #45a049);
|
| 221 |
+
border: none;
|
| 222 |
+
border-radius: 10px;
|
| 223 |
+
color: white;
|
| 224 |
+
padding: 12px 24px;
|
| 225 |
+
font-weight: bold;
|
| 226 |
+
transition: all 0.3s ease;
|
| 227 |
+
box-shadow: 0 4px 15px rgba(76, 175, 80, 0.3);
|
| 228 |
+
}
|
| 229 |
+
|
| 230 |
+
button.primary-button:hover {
|
| 231 |
+
transform: translateY(-2px);
|
| 232 |
+
box-shadow: 0 6px 20px rgba(76, 175, 80, 0.4);
|
| 233 |
+
}
|
| 234 |
+
|
| 235 |
+
/* Image container styling */
|
| 236 |
+
.image-container {
|
| 237 |
+
border-radius: 15px;
|
| 238 |
+
overflow: hidden;
|
| 239 |
+
box-shadow: 0 4px 15px rgba(0,0,0,0.1);
|
| 240 |
+
transition: transform 0.3s ease;
|
| 241 |
+
}
|
| 242 |
|
| 243 |
+
.image-container:hover {
|
| 244 |
+
transform: scale(1.02);
|
| 245 |
+
}
|
| 246 |
+
|
| 247 |
+
/* Radio button styling */
|
| 248 |
+
.radio-group label {
|
| 249 |
+
background-color: #ffffff;
|
| 250 |
+
border-radius: 8px;
|
| 251 |
+
padding: 10px 15px;
|
| 252 |
+
margin: 5px;
|
| 253 |
+
cursor: pointer;
|
| 254 |
+
transition: all 0.3s ease;
|
| 255 |
+
}
|
| 256 |
+
|
| 257 |
+
.radio-group input:checked + label {
|
| 258 |
+
background-color: #4CAF50;
|
| 259 |
+
color: white;
|
| 260 |
+
}
|
| 261 |
+
|
| 262 |
+
/* Slider styling */
|
| 263 |
+
.slider-container {
|
| 264 |
+
background: white;
|
| 265 |
+
padding: 15px;
|
| 266 |
+
border-radius: 10px;
|
| 267 |
+
box-shadow: 0 2px 10px rgba(0,0,0,0.05);
|
| 268 |
+
}
|
| 269 |
+
|
| 270 |
+
.slider {
|
| 271 |
+
height: 8px;
|
| 272 |
+
border-radius: 4px;
|
| 273 |
+
background: #e0e0e0;
|
| 274 |
+
}
|
| 275 |
+
|
| 276 |
+
.slider .thumb {
|
| 277 |
+
width: 20px;
|
| 278 |
+
height: 20px;
|
| 279 |
+
background: #4CAF50;
|
| 280 |
+
border-radius: 50%;
|
| 281 |
+
box-shadow: 0 2px 5px rgba(0,0,0,0.2);
|
| 282 |
+
}
|
| 283 |
+
|
| 284 |
+
/* Alert/warning text styling */
|
| 285 |
+
.warning-text {
|
| 286 |
+
color: #ff5252;
|
| 287 |
+
font-weight: bold;
|
| 288 |
+
text-align: center;
|
| 289 |
+
padding: 10px;
|
| 290 |
+
background: rgba(255,82,82,0.1);
|
| 291 |
+
border-radius: 8px;
|
| 292 |
+
margin: 10px 0;
|
| 293 |
+
}
|
| 294 |
+
|
| 295 |
+
/* Example gallery styling */
|
| 296 |
+
.example-gallery {
|
| 297 |
+
display: grid;
|
| 298 |
+
grid-template-columns: repeat(auto-fit, minmax(150px, 1fr));
|
| 299 |
+
gap: 15px;
|
| 300 |
+
padding: 15px;
|
| 301 |
+
background: white;
|
| 302 |
+
border-radius: 10px;
|
| 303 |
+
box-shadow: 0 2px 10px rgba(0,0,0,0.05);
|
| 304 |
+
}
|
| 305 |
+
|
| 306 |
+
.example-item {
|
| 307 |
+
border-radius: 8px;
|
| 308 |
+
overflow: hidden;
|
| 309 |
+
transition: transform 0.3s ease;
|
| 310 |
+
}
|
| 311 |
+
|
| 312 |
+
.example-item:hover {
|
| 313 |
+
transform: scale(1.05);
|
| 314 |
+
}
|
| 315 |
+
"""
|
| 316 |
+
|
| 317 |
+
def app_gradio():
|
| 318 |
+
with gr.Blocks(theme=gr.themes.Soft(primary_hue="green", secondary_hue="blue"), css=css) as demo:
|
| 319 |
+
gr.Markdown(
|
| 320 |
+
"""
|
| 321 |
+
# Virtual Try-On App 👔
|
| 322 |
+
Transform your look with AI-powered virtual clothing try-on!
|
| 323 |
+
"""
|
| 324 |
+
)
|
| 325 |
+
|
| 326 |
with gr.Row():
|
| 327 |
with gr.Column(scale=1, min_width=350):
|
| 328 |
+
with gr.Box():
|
| 329 |
+
gr.Markdown("### 📸 Upload Images")
|
| 330 |
+
with gr.Row():
|
| 331 |
+
image_path = gr.Image(
|
| 332 |
+
type="filepath",
|
| 333 |
+
interactive=True,
|
| 334 |
+
visible=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 335 |
)
|
| 336 |
+
person_image = gr.ImageEditor(
|
| 337 |
+
interactive=True,
|
| 338 |
+
label="Person Image",
|
| 339 |
+
type="filepath",
|
| 340 |
+
elem_classes="image-container"
|
| 341 |
)
|
| 342 |
|
| 343 |
+
with gr.Row():
|
| 344 |
+
with gr.Column(scale=1, min_width=230):
|
| 345 |
+
cloth_image = gr.Image(
|
| 346 |
+
interactive=True,
|
| 347 |
+
label="Clothing Item",
|
| 348 |
+
type="filepath",
|
| 349 |
+
elem_classes="image-container"
|
| 350 |
+
)
|
| 351 |
+
with gr.Column(scale=1, min_width=120):
|
| 352 |
+
gr.Markdown(
|
| 353 |
+
"""
|
| 354 |
+
### 🎯 Masking Options
|
| 355 |
+
1. Draw mask manually with 🖌️
|
| 356 |
+
2. Auto-generate based on clothing type
|
| 357 |
+
"""
|
| 358 |
+
)
|
| 359 |
+
cloth_type = gr.Radio(
|
| 360 |
+
label="Clothing Type",
|
| 361 |
+
choices=["upper", "lower", "overall"],
|
| 362 |
+
value="upper",
|
| 363 |
+
elem_classes="radio-group"
|
| 364 |
+
)
|
| 365 |
|
| 366 |
+
submit = gr.Button("🚀 Generate Try-On", elem_classes="primary-button")
|
| 367 |
gr.Markdown(
|
| 368 |
+
"""
|
| 369 |
+
<div class="warning-text">
|
| 370 |
+
⚠️ Please click only once and wait patiently for processing
|
| 371 |
+
</div>
|
| 372 |
+
"""
|
| 373 |
)
|
| 374 |
|
| 375 |
+
with gr.Accordion("⚙️ Advanced Settings", open=False):
|
|
|
|
|
|
|
|
|
|
| 376 |
num_inference_steps = gr.Slider(
|
| 377 |
+
label="Quality Level",
|
| 378 |
+
minimum=10,
|
| 379 |
+
maximum=100,
|
| 380 |
+
step=5,
|
| 381 |
+
value=50,
|
| 382 |
+
elem_classes="slider-container"
|
| 383 |
)
|
|
|
|
| 384 |
guidance_scale = gr.Slider(
|
| 385 |
+
label="Style Strength",
|
| 386 |
+
minimum=0.0,
|
| 387 |
+
maximum=7.5,
|
| 388 |
+
step=0.5,
|
| 389 |
+
value=2.5,
|
| 390 |
+
elem_classes="slider-container"
|
| 391 |
)
|
|
|
|
| 392 |
seed = gr.Slider(
|
| 393 |
+
label="Random Seed",
|
| 394 |
+
minimum=-1,
|
| 395 |
+
maximum=10000,
|
| 396 |
+
step=1,
|
| 397 |
+
value=42,
|
| 398 |
+
elem_classes="slider-container"
|
| 399 |
)
|
| 400 |
show_type = gr.Radio(
|
| 401 |
+
label="Display Mode",
|
| 402 |
choices=["result only", "input & result", "input & mask & result"],
|
| 403 |
value="input & mask & result",
|
| 404 |
+
elem_classes="radio-group"
|
| 405 |
)
|
|
|
|
| 406 |
with gr.Column(scale=2, min_width=500):
|
| 407 |
+
result_image = gr.Image(
|
| 408 |
+
interactive=False,
|
| 409 |
+
label="Final Result",
|
| 410 |
+
elem_classes="image result_image = gr.Image(
|
| 411 |
+
interactive=False,
|
| 412 |
+
label="Final Result",
|
| 413 |
+
elem_classes="image-container"
|
| 414 |
+
)
|
| 415 |
+
|
| 416 |
+
with gr.Row():
|
| 417 |
+
# Photo Examples
|
| 418 |
+
root_path = "resource/demo/example"
|
| 419 |
+
with gr.Column():
|
| 420 |
+
gr.Markdown("#### 👤 Model Examples")
|
| 421 |
+
men_exm = gr.Examples(
|
| 422 |
+
examples=[
|
| 423 |
+
os.path.join(root_path, "person", "men", _)
|
| 424 |
+
for _ in os.listdir(os.path.join(root_path, "person", "men"))
|
| 425 |
+
],
|
| 426 |
+
examples_per_page=4,
|
| 427 |
+
inputs=image_path,
|
| 428 |
+
label="Men's Examples",
|
| 429 |
+
elem_classes="example-item"
|
| 430 |
+
)
|
| 431 |
+
women_exm = gr.Examples(
|
| 432 |
+
examples=[
|
| 433 |
+
os.path.join(root_path, "person", "women", _)
|
| 434 |
+
for _ in os.listdir(os.path.join(root_path, "person", "women"))
|
| 435 |
+
],
|
| 436 |
+
examples_per_page=4,
|
| 437 |
+
inputs=image_path,
|
| 438 |
+
label="Women's Examples",
|
| 439 |
+
elem_classes="example-item"
|
| 440 |
+
)
|
| 441 |
+
gr.Markdown(
|
| 442 |
+
'<div class="info-text">Model examples courtesy of <a href="https://huggingface.co/spaces/levihsu/OOTDiffusion">OOTDiffusion</a> and <a href="https://www.outfitanyone.org">OutfitAnyone</a></div>'
|
| 443 |
+
)
|
| 444 |
+
|
| 445 |
+
with gr.Column():
|
| 446 |
+
gr.Markdown("#### 👕 Clothing Examples")
|
| 447 |
+
condition_upper_exm = gr.Examples(
|
| 448 |
+
examples=[
|
| 449 |
+
os.path.join(root_path, "condition", "upper", _)
|
| 450 |
+
for _ in os.listdir(os.path.join(root_path, "condition", "upper"))
|
| 451 |
+
],
|
| 452 |
+
examples_per_page=4,
|
| 453 |
+
inputs=cloth_image,
|
| 454 |
+
label="Upper Garments",
|
| 455 |
+
elem_classes="example-item"
|
| 456 |
+
)
|
| 457 |
+
condition_overall_exm = gr.Examples(
|
| 458 |
+
examples=[
|
| 459 |
+
os.path.join(root_path, "condition", "overall", _)
|
| 460 |
+
for _ in os.listdir(os.path.join(root_path, "condition", "overall"))
|
| 461 |
+
],
|
| 462 |
+
examples_per_page=4,
|
| 463 |
+
inputs=cloth_image,
|
| 464 |
+
label="Full Outfits",
|
| 465 |
+
elem_classes="example-item"
|
| 466 |
+
)
|
| 467 |
+
condition_person_exm = gr.Examples(
|
| 468 |
+
examples=[
|
| 469 |
+
os.path.join(root_path, "condition", "person", _)
|
| 470 |
+
for _ in os.listdir(os.path.join(root_path, "condition", "person"))
|
| 471 |
+
],
|
| 472 |
+
examples_per_page=4,
|
| 473 |
+
inputs=cloth_image,
|
| 474 |
+
label="Reference Styles",
|
| 475 |
+
elem_classes="example-item"
|
| 476 |
+
)
|
| 477 |
+
gr.Markdown(
|
| 478 |
+
'<div class="info-text">Clothing examples sourced from various online retailers</div>'
|
| 479 |
+
)
|
| 480 |
|
| 481 |
image_path.change(
|
| 482 |
+
person_example_fn,
|
| 483 |
+
inputs=image_path,
|
| 484 |
+
outputs=person_image
|
| 485 |
)
|
| 486 |
|
| 487 |
submit.click(
|
|
|
|
| 497 |
],
|
| 498 |
result_image,
|
| 499 |
)
|
| 500 |
+
|
| 501 |
+
gr.Markdown(
|
| 502 |
+
"""
|
| 503 |
+
### 💡 Tips & Instructions
|
| 504 |
+
1. Upload or select a person image
|
| 505 |
+
2. Choose or upload a clothing item
|
| 506 |
+
3. Select clothing type (upper/lower/overall)
|
| 507 |
+
4. Adjust advanced settings if needed
|
| 508 |
+
5. Click Generate and wait for results
|
| 509 |
+
|
| 510 |
+
For best results, use clear, front-facing images with good lighting.
|
| 511 |
+
"""
|
| 512 |
+
)
|
| 513 |
+
|
| 514 |
demo.queue().launch(share=True, show_error=True)
|
| 515 |
|
|
|
|
| 516 |
if __name__ == "__main__":
|
| 517 |
+
app_gradio()
|