Vageesh1 commited on
Commit
b697f9e
·
1 Parent(s): 860e2fd

Upload model.py

Browse files
Files changed (1) hide show
  1. model.py +220 -0
model.py ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import clip
2
+ import os
3
+ from torch import nn
4
+ import numpy as np
5
+ import torch
6
+ import torch.nn.functional as nnf
7
+ import sys
8
+ from typing import Tuple, List, Union, Optional
9
+ from transformers import GPT2Tokenizer, GPT2LMHeadModel, AdamW, get_linear_schedule_with_warmup
10
+ from tqdm import tqdm, trange
11
+ import skimage.io as io
12
+ import PIL.Image
13
+
14
+
15
+ N = type(None)
16
+ V = np.array
17
+ ARRAY = np.ndarray
18
+ ARRAYS = Union[Tuple[ARRAY, ...], List[ARRAY]]
19
+ VS = Union[Tuple[V, ...], List[V]]
20
+ VN = Union[V, N]
21
+ VNS = Union[VS, N]
22
+ T = torch.Tensor
23
+ TS = Union[Tuple[T, ...], List[T]]
24
+ TN = Optional[T]
25
+ TNS = Union[Tuple[TN, ...], List[TN]]
26
+ TSN = Optional[TS]
27
+ TA = Union[T, ARRAY]
28
+
29
+
30
+ D = torch.device
31
+
32
+ def get_device(device_id: int) -> D:
33
+ if not torch.cuda.is_available():
34
+ return CPU
35
+ device_id = min(torch.cuda.device_count() - 1, device_id)
36
+ return torch.device(f'cuda:{device_id}')
37
+
38
+
39
+ CUDA = get_device
40
+
41
+ current_directory = os.getcwd()
42
+ save_path = os.path.join(os.path.dirname(current_directory), "pretrained_models")
43
+ os.makedirs(save_path, exist_ok=True)
44
+ model_path = os.path.join(save_path, 'model_wieghts.pt')
45
+
46
+
47
+ class MLP(nn.Module):
48
+
49
+ def forward(self, x: T) -> T:
50
+ return self.model(x)
51
+
52
+ def __init__(self, sizes: Tuple[int, ...], bias=True, act=nn.Tanh):
53
+ super(MLP, self).__init__()
54
+ layers = []
55
+ for i in range(len(sizes) -1):
56
+ layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias))
57
+ if i < len(sizes) - 2:
58
+ layers.append(act())
59
+ self.model = nn.Sequential(*layers)
60
+
61
+ class ClipCaptionModel(nn.Module):
62
+
63
+ #@functools.lru_cache #FIXME
64
+ def get_dummy_token(self, batch_size: int, device: D) -> T:
65
+ return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device)
66
+
67
+ def forward(self, tokens: T, prefix: T, mask: Optional[T] = None, labels: Optional[T] = None):
68
+ embedding_text = self.gpt.transformer.wte(tokens)
69
+ prefix_projections = self.clip_project(prefix).view(-1, self.prefix_length, self.gpt_embedding_size)
70
+ #print(embedding_text.size()) #torch.Size([5, 67, 768])
71
+ #print(prefix_projections.size()) #torch.Size([5, 1, 768])
72
+ embedding_cat = torch.cat((prefix_projections, embedding_text), dim=1)
73
+ if labels is not None:
74
+ dummy_token = self.get_dummy_token(tokens.shape[0], tokens.device)
75
+ labels = torch.cat((dummy_token, tokens), dim=1)
76
+ out = self.gpt(inputs_embeds=embedding_cat, labels=labels, attention_mask=mask)
77
+ return out
78
+
79
+ def __init__(self, prefix_length: int, prefix_size: int = 512):
80
+ super(ClipCaptionModel, self).__init__()
81
+ self.prefix_length = prefix_length
82
+ self.gpt = GPT2LMHeadModel.from_pretrained('gpt2')
83
+ self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1]
84
+ if prefix_length > 10: # not enough memory
85
+ self.clip_project = nn.Linear(prefix_size, self.gpt_embedding_size * prefix_length)
86
+ else:
87
+ self.clip_project = MLP((prefix_size, (self.gpt_embedding_size * prefix_length) // 2, self.gpt_embedding_size * prefix_length))
88
+
89
+
90
+ class ClipCaptionPrefix(ClipCaptionModel):
91
+
92
+ def parameters(self, recurse: bool = True):
93
+ return self.clip_project.parameters()
94
+
95
+ def train(self, mode: bool = True):
96
+ super(ClipCaptionPrefix, self).train(mode)
97
+ self.gpt.eval()
98
+ return self
99
+
100
+ def generate_beam(model, tokenizer, beam_size: int = 5, prompt=None, embed=None,
101
+ entry_length=67, temperature=1., stop_token: str = '.'):
102
+
103
+ model.eval()
104
+ stop_token_index = tokenizer.encode(stop_token)[0]
105
+ tokens = None
106
+ scores = None
107
+ device = next(model.parameters()).device
108
+ seq_lengths = torch.ones(beam_size, device=device)
109
+ is_stopped = torch.zeros(beam_size, device=device, dtype=torch.bool)
110
+ with torch.no_grad():
111
+ if embed is not None:
112
+ generated = embed
113
+ else:
114
+ if tokens is None:
115
+ tokens = torch.tensor(tokenizer.encode(prompt))
116
+ tokens = tokens.unsqueeze(0).to(device)
117
+ generated = model.gpt.transformer.wte(tokens)
118
+ for i in range(entry_length):
119
+ outputs = model.gpt(inputs_embeds=generated)
120
+ logits = outputs.logits
121
+ logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
122
+ logits = logits.softmax(-1).log()
123
+ if scores is None:
124
+ scores, next_tokens = logits.topk(beam_size, -1)
125
+ generated = generated.expand(beam_size, *generated.shape[1:])
126
+ next_tokens, scores = next_tokens.permute(1, 0), scores.squeeze(0)
127
+ if tokens is None:
128
+ tokens = next_tokens
129
+ else:
130
+ tokens = tokens.expand(beam_size, *tokens.shape[1:])
131
+ tokens = torch.cat((tokens, next_tokens), dim=1)
132
+ else:
133
+ logits[is_stopped] = -float(np.inf)
134
+ logits[is_stopped, 0] = 0
135
+ scores_sum = scores[:, None] + logits
136
+ seq_lengths[~is_stopped] += 1
137
+ scores_sum_average = scores_sum / seq_lengths[:, None]
138
+ scores_sum_average, next_tokens = scores_sum_average.view(-1).topk(beam_size, -1)
139
+ next_tokens_source = next_tokens // scores_sum.shape[1]
140
+ seq_lengths = seq_lengths[next_tokens_source]
141
+ next_tokens = next_tokens % scores_sum.shape[1]
142
+ next_tokens = next_tokens.unsqueeze(1)
143
+ tokens = tokens[next_tokens_source]
144
+ tokens = torch.cat((tokens, next_tokens), dim=1)
145
+ generated = generated[next_tokens_source]
146
+ scores = scores_sum_average * seq_lengths
147
+ is_stopped = is_stopped[next_tokens_source]
148
+ next_token_embed = model.gpt.transformer.wte(next_tokens.squeeze()).view(generated.shape[0], 1, -1)
149
+ generated = torch.cat((generated, next_token_embed), dim=1)
150
+ is_stopped = is_stopped + next_tokens.eq(stop_token_index).squeeze()
151
+ if is_stopped.all():
152
+ break
153
+ scores = scores / seq_lengths
154
+ output_list = tokens.cpu().numpy()
155
+ output_texts = [tokenizer.decode(output[:int(length)]) for output, length in zip(output_list, seq_lengths)]
156
+ order = scores.argsort(descending=True)
157
+ output_texts = [output_texts[i] for i in order]
158
+ return output_texts
159
+
160
+ def generate2(
161
+ model,
162
+ tokenizer,
163
+ tokens=None,
164
+ prompt=None,
165
+ embed=None,
166
+ entry_count=1,
167
+ entry_length=67, # maximum number of words
168
+ top_p=0.8,
169
+ temperature=1.,
170
+ stop_token: str = '.',
171
+ ):
172
+ model.eval()
173
+ generated_num = 0
174
+ generated_list = []
175
+ stop_token_index = tokenizer.encode(stop_token)[0]
176
+ filter_value = -float("Inf")
177
+ device = next(model.parameters()).device
178
+
179
+ with torch.no_grad():
180
+
181
+ for entry_idx in trange(entry_count):
182
+ if embed is not None:
183
+ generated = embed
184
+ else:
185
+ if tokens is None:
186
+ tokens = torch.tensor(tokenizer.encode(prompt))
187
+ tokens = tokens.unsqueeze(0).to(device)
188
+
189
+ generated = model.gpt.transformer.wte(tokens)
190
+
191
+ for i in range(entry_length):
192
+
193
+ outputs = model.gpt(inputs_embeds=generated)
194
+ logits = outputs.logits
195
+ logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
196
+ sorted_logits, sorted_indices = torch.sort(logits, descending=True)
197
+ cumulative_probs = torch.cumsum(nnf.softmax(sorted_logits, dim=-1), dim=-1)
198
+ sorted_indices_to_remove = cumulative_probs > top_p
199
+ sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[
200
+ ..., :-1
201
+ ].clone()
202
+ sorted_indices_to_remove[..., 0] = 0
203
+
204
+ indices_to_remove = sorted_indices[sorted_indices_to_remove]
205
+ logits[:, indices_to_remove] = filter_value
206
+ next_token = torch.argmax(logits, -1).unsqueeze(0)
207
+ next_token_embed = model.gpt.transformer.wte(next_token)
208
+ if tokens is None:
209
+ tokens = next_token
210
+ else:
211
+ tokens = torch.cat((tokens, next_token), dim=1)
212
+ generated = torch.cat((generated, next_token_embed), dim=1)
213
+ if stop_token_index == next_token.item():
214
+ break
215
+
216
+ output_list = list(tokens.squeeze().cpu().numpy())
217
+ output_text = tokenizer.decode(output_list)
218
+ generated_list.append(output_text)
219
+
220
+ return generated_list[0]