Spaces:
Sleeping
Sleeping
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| from peft import PeftModel | |
| import torch | |
| import transformers.training_args | |
| # ✅ Fix: allow this class for safe loading in PyTorch 2.6+ | |
| torch.serialization.add_safe_globals([transformers.training_args.TrainingArguments]) | |
| BASE_MODEL = "deepseek-ai/deepseek-coder-1.3b-base" | |
| LORA_REPO = "VaibhavHD/deepseek-lora-monthly" | |
| tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True) | |
| base = AutoModelForCausalLM.from_pretrained(BASE_MODEL, trust_remote_code=True) | |
| model = PeftModel.from_pretrained(base, LORA_REPO) | |
| def generate_response(prompt: str) -> str: | |
| inputs = tokenizer(prompt, return_tensors="pt") | |
| out = model.generate(**inputs, max_new_tokens=200) | |
| return tokenizer.decode(out[0], skip_special_tokens=True) | |