Spaces:
Running
Running
File size: 6,633 Bytes
813c419 607f9fb 813c419 607f9fb 813c419 607f9fb 813c419 607f9fb 813c419 607f9fb 813c419 607f9fb 813c419 607f9fb 813c419 607f9fb 813c419 607f9fb 813c419 607f9fb 813c419 607f9fb 813c419 607f9fb 813c419 607f9fb 813c419 607f9fb 813c419 607f9fb 813c419 607f9fb 813c419 607f9fb 813c419 607f9fb 813c419 607f9fb 813c419 607f9fb 813c419 607f9fb 813c419 607f9fb 813c419 607f9fb 813c419 607f9fb 813c419 607f9fb 813c419 607f9fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import gradio as gr
import torch
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import numpy as np
from scipy.io.wavfile import write
import os
print("Initializing models...")
# Initialize lyrics generation model (using GPT-2 as an example)
lyrics_model_name = "gpt2" # You can use a fine-tuned model specific to lyrics
lyrics_tokenizer = AutoTokenizer.from_pretrained(lyrics_model_name)
lyrics_model = AutoModelForCausalLM.from_pretrained(lyrics_model_name)
lyrics_generator = pipeline("text-generation", model=lyrics_model, tokenizer=lyrics_tokenizer)
# Initialize Bark for vocals and music generation
from transformers import BarkModel, BarkProcessor
print("Loading Bark model...")
bark_processor = BarkProcessor.from_pretrained("suno/bark")
bark_model = BarkModel.from_pretrained("suno/bark")
# Move to GPU if available
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
bark_model = bark_model.to(device)
def generate_lyrics(prompt, max_length=150):
"""Generate song lyrics based on the input prompt"""
# Add specific instructions to guide the model to generate lyrics
enhanced_prompt = f"Write song lyrics about {prompt}. Include a verse and chorus structure:"
# Generate lyrics using the model
generated = lyrics_generator(
enhanced_prompt,
max_length=max_length,
num_return_sequences=1,
temperature=0.9,
top_k=50,
top_p=0.95
)
# Extract lyrics from generation
lyrics = generated[0]['generated_text'].replace(enhanced_prompt, "").strip()
return lyrics
def generate_vocals(lyrics, voice_preset="v2/en_speaker_6"):
"""Generate vocals using Bark"""
print(f"Generating vocals with lyrics: {lyrics[:50]}...")
# Process text for better vocal generation by adding musical notation
vocals_text = f"♪ {lyrics} ♪"
inputs = bark_processor(text=vocals_text, voice_preset=voice_preset)
audio_array = bark_model.generate(**inputs)
audio_array = audio_array.cpu().numpy().squeeze()
# Convert to proper audio format
sample_rate = 24000 # Bark's output sample rate
# Save temporarily and return path
os.makedirs("outputs", exist_ok=True)
output_path = "outputs/vocals.wav"
write(output_path, sample_rate, audio_array)
return output_path, sample_rate, audio_array
def generate_simple_music(prompt, voice_preset="v2/en_speaker_9"):
"""Generate simple music using Bark's capability to create singing/humming"""
print(f"Generating music for theme: {prompt}...")
# Create a prompt that instructs Bark to generate instrumental sounds
music_text = f"[music: {prompt}, instrumental, background music without lyrics] ♪ hmm hmm hmm ♪"
inputs = bark_processor(text=music_text, voice_preset=voice_preset)
audio_array = bark_model.generate(**inputs)
audio_array = audio_array.cpu().numpy().squeeze()
# Convert to proper audio format
sample_rate = 24000 # Bark's output sample rate
# Save temporarily and return path
os.makedirs("outputs", exist_ok=True)
output_path = "outputs/music.wav"
write(output_path, sample_rate, audio_array)
return output_path, sample_rate, audio_array
def mix_audio(vocals_data, music_data, vocals_volume=0.7, music_volume=0.4):
"""Combine vocals and music with basic mixing"""
vocals_path, vocals_sr, vocals_array = vocals_data
music_path, music_sr, music_array = music_data
# Adjust length - make sure both are the same length by padding or truncating
max_length = max(len(vocals_array), len(music_array))
if len(vocals_array) < max_length:
vocals_array = np.pad(vocals_array, (0, max_length - len(vocals_array)))
if len(music_array) < max_length:
music_array = np.pad(music_array, (0, max_length - len(music_array)))
else:
# Truncate music if too long
music_array = music_array[:max_length]
# Mix - make vocals louder than music
mixed_audio = vocals_volume * vocals_array + music_volume * music_array
# Normalize
mixed_audio = mixed_audio / np.max(np.abs(mixed_audio)) * 0.9
# Save final mix
os.makedirs("outputs", exist_ok=True)
output_path = "outputs/final_song.wav"
write(output_path, vocals_sr, mixed_audio)
return output_path
def text_to_song(prompt, voice_selection):
"""Main function to convert text prompt to a song"""
print(f"Processing prompt: {prompt}")
# Set the voice based on selection
voice_presets = {
"Female Singer": "v2/en_speaker_6",
"Male Singer": "v2/en_speaker_5",
"Female Alto": "v2/en_speaker_9",
"Male Baritone": "v2/en_speaker_0"
}
selected_voice = voice_presets.get(voice_selection, "v2/en_speaker_6")
# Step 1: Generate lyrics
lyrics = generate_lyrics(prompt)
# Step 2: Generate vocals
vocals_data = generate_vocals(lyrics, voice_preset=selected_voice)
# Step 3: Generate simple music using Bark
music_data = generate_simple_music(prompt)
# Step 4: Mix vocals and music
final_song_path = mix_audio(vocals_data, music_data)
return lyrics, final_song_path
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Text to Song Generation App")
gr.Markdown("Enter a prompt describing the song you want to generate")
with gr.Row():
prompt_input = gr.Textbox(
label="Prompt",
placeholder="Enter a description for your song...",
value="a love song about summer"
)
voice_selection = gr.Dropdown(
choices=["Female Singer", "Male Singer", "Female Alto", "Male Baritone"],
label="Select Voice",
value="Female Singer"
)
generate_button = gr.Button("Generate Song")
with gr.Row():
lyrics_output = gr.Textbox(label="Generated Lyrics")
with gr.Row():
audio_output = gr.Audio(label="Generated Song")
generate_button.click(
fn=text_to_song,
inputs=[prompt_input, voice_selection],
outputs=[lyrics_output, audio_output]
)
# Add examples
gr.Examples(
examples=[
["a heartfelt country ballad about lost love", "Male Singer"],
["an upbeat pop song about friendship", "Female Singer"],
["a rock anthem about overcoming challenges", "Male Baritone"]
],
inputs=[prompt_input, voice_selection]
)
# Launch the app
if __name__ == "__main__":
demo.launch() |