Update app.py
Browse files
app.py
CHANGED
|
@@ -1,18 +1,17 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import spaces
|
| 3 |
import torch
|
| 4 |
import os
|
| 5 |
import numpy as np
|
| 6 |
from groq import Groq
|
| 7 |
-
from transformers import AutoModel, AutoTokenizer
|
| 8 |
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
|
| 9 |
from parler_tts import ParlerTTSForConditionalGeneration
|
| 10 |
import soundfile as sf
|
| 11 |
-
from langchain.embeddings
|
| 12 |
-
from langchain.vectorstores import Chroma
|
| 13 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 14 |
from langchain.chains import RetrievalQA
|
| 15 |
-
from langchain.llms import OpenAI
|
| 16 |
from PIL import Image
|
| 17 |
from decord import VideoReader, cpu
|
| 18 |
import requests
|
|
@@ -20,9 +19,17 @@ import requests
|
|
| 20 |
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
| 21 |
MODEL = 'llama3-groq-70b-8192-tool-use-preview'
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
# Load models for text, speech, and image processing
|
| 24 |
text_model = AutoModel.from_pretrained('openbmb/MiniCPM-V-2_6', trust_remote_code=True,
|
| 25 |
-
|
| 26 |
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-2_6', trust_remote_code=True)
|
| 27 |
|
| 28 |
tts_model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-large-v1").to('cuda')
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import torch
|
| 3 |
import os
|
| 4 |
import numpy as np
|
| 5 |
from groq import Groq
|
| 6 |
+
from transformers import AutoModel, AutoTokenizer, BitsAndBytesConfig
|
| 7 |
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
|
| 8 |
from parler_tts import ParlerTTSForConditionalGeneration
|
| 9 |
import soundfile as sf
|
| 10 |
+
from langchain.embeddings import OpenAIEmbeddings
|
| 11 |
+
from langchain.vectorstores import Chroma
|
| 12 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 13 |
from langchain.chains import RetrievalQA
|
| 14 |
+
from langchain.llms import OpenAI
|
| 15 |
from PIL import Image
|
| 16 |
from decord import VideoReader, cpu
|
| 17 |
import requests
|
|
|
|
| 19 |
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
| 20 |
MODEL = 'llama3-groq-70b-8192-tool-use-preview'
|
| 21 |
|
| 22 |
+
# Configure transformers to load the model with 4-bit quantization
|
| 23 |
+
bnb_config = BitsAndBytesConfig(
|
| 24 |
+
load_in_4bit=True,
|
| 25 |
+
bnb_4bit_use_double_quant=True,
|
| 26 |
+
bnb_4bit_quant_type="nf4",
|
| 27 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
# Load models for text, speech, and image processing
|
| 31 |
text_model = AutoModel.from_pretrained('openbmb/MiniCPM-V-2_6', trust_remote_code=True,
|
| 32 |
+
quantization_config=bnb_config, device_map="auto")
|
| 33 |
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-2_6', trust_remote_code=True)
|
| 34 |
|
| 35 |
tts_model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-large-v1").to('cuda')
|