Update app.py
Browse files
app.py
CHANGED
|
@@ -3,7 +3,6 @@ import torch
|
|
| 3 |
import os
|
| 4 |
import numpy as np
|
| 5 |
from groq import Groq
|
| 6 |
-
import spaces
|
| 7 |
from transformers import AutoModel, AutoTokenizer
|
| 8 |
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
|
| 9 |
from parler_tts import ParlerTTSForConditionalGeneration
|
|
@@ -12,13 +11,14 @@ from langchain_community.embeddings import OpenAIEmbeddings
|
|
| 12 |
from langchain_community.vectorstores import Chroma
|
| 13 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 14 |
from langchain.chains import RetrievalQA
|
| 15 |
-
from langchain_community.llms import OpenAI
|
| 16 |
from PIL import Image
|
| 17 |
from decord import VideoReader, cpu
|
|
|
|
| 18 |
import requests
|
| 19 |
from huggingface_hub import hf_hub_download
|
| 20 |
from safetensors.torch import load_file
|
| 21 |
|
|
|
|
| 22 |
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
| 23 |
MODEL = 'llama3-groq-70b-8192-tool-use-preview'
|
| 24 |
|
|
@@ -39,7 +39,10 @@ unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda"))
|
|
| 39 |
image_pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
| 40 |
image_pipe.scheduler = EulerDiscreteScheduler.from_config(image_pipe.scheduler.config, timestep_spacing="trailing")
|
| 41 |
|
| 42 |
-
#
|
|
|
|
|
|
|
|
|
|
| 43 |
def play_voice_output(response):
|
| 44 |
description = "Jon's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise."
|
| 45 |
input_ids = tts_tokenizer(description, return_tensors="pt").input_ids.to('cuda')
|
|
@@ -49,18 +52,6 @@ def play_voice_output(response):
|
|
| 49 |
sf.write("output.wav", audio_arr, tts_model.config.sampling_rate)
|
| 50 |
return "output.wav"
|
| 51 |
|
| 52 |
-
# Web search function
|
| 53 |
-
def web_search(query):
|
| 54 |
-
api_key = os.environ.get("BING_API_KEY")
|
| 55 |
-
search_url = "https://api.bing.microsoft.com/v7.0/search"
|
| 56 |
-
headers = {"Ocp-Apim-Subscription-Key": api_key}
|
| 57 |
-
params = {"q": query, "textDecorations": True, "textFormat": "HTML"}
|
| 58 |
-
response = requests.get(search_url, headers=headers, params=params)
|
| 59 |
-
response.raise_for_status()
|
| 60 |
-
search_results = response.json()
|
| 61 |
-
snippets = [result['snippet'] for result in search_results.get('webPages', {}).get('value', [])]
|
| 62 |
-
return "\n".join(snippets)
|
| 63 |
-
|
| 64 |
# NumPy Calculation function
|
| 65 |
def numpy_calculate(code: str) -> str:
|
| 66 |
try:
|
|
@@ -71,37 +62,6 @@ def numpy_calculate(code: str) -> str:
|
|
| 71 |
except Exception as e:
|
| 72 |
return f"An error occurred: {str(e)}"
|
| 73 |
|
| 74 |
-
# Function to handle different input types
|
| 75 |
-
def handle_input(user_prompt, image=None, video=None, audio=None, doc=None):
|
| 76 |
-
messages = [{"role": "user", "content": user_prompt}]
|
| 77 |
-
|
| 78 |
-
if audio:
|
| 79 |
-
transcription = client.audio.transcriptions.create(
|
| 80 |
-
file=(audio.name, audio.read()),
|
| 81 |
-
model="whisper-large-v3"
|
| 82 |
-
)
|
| 83 |
-
user_prompt = transcription.text
|
| 84 |
-
|
| 85 |
-
if doc:
|
| 86 |
-
# RAG with Langchain
|
| 87 |
-
response = use_langchain_rag(doc.name, doc.read(), user_prompt)
|
| 88 |
-
elif image and not video:
|
| 89 |
-
image = Image.open(image).convert('RGB')
|
| 90 |
-
messages[0]['content'] = [image, user_prompt]
|
| 91 |
-
response = text_model.chat(image=None, msgs=messages, tokenizer=tokenizer)
|
| 92 |
-
elif video:
|
| 93 |
-
frames = encode_video(video.name)
|
| 94 |
-
messages[0]['content'] = frames + [user_prompt]
|
| 95 |
-
response = text_model.chat(image=None, msgs=messages, tokenizer=tokenizer)
|
| 96 |
-
else:
|
| 97 |
-
response = client.chat.completions.create(
|
| 98 |
-
model=MODEL,
|
| 99 |
-
messages=messages,
|
| 100 |
-
tools=initialize_tools()
|
| 101 |
-
).choices[0].message.content
|
| 102 |
-
|
| 103 |
-
return response
|
| 104 |
-
|
| 105 |
# Function to use Langchain for RAG
|
| 106 |
def use_langchain_rag(file_name, file_content, query):
|
| 107 |
# Split the document into chunks
|
|
@@ -130,64 +90,58 @@ def encode_video(video_path):
|
|
| 130 |
frames = [Image.fromarray(v.astype('uint8')) for v in frames]
|
| 131 |
return frames
|
| 132 |
|
| 133 |
-
#
|
| 134 |
-
def
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
"
|
| 169 |
-
"
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
},
|
| 177 |
-
"implementation": numpy_calculate
|
| 178 |
-
}
|
| 179 |
-
}
|
| 180 |
-
]
|
| 181 |
-
return tools
|
| 182 |
|
| 183 |
@spaces.GPU()
|
| 184 |
-
def main_interface(user_prompt, image=None, video=None, audio=None, doc=None, voice_only=False):
|
| 185 |
text_model.to(device='cuda', dtype=torch.bfloat16)
|
| 186 |
tts_model.to("cuda")
|
| 187 |
unet.to("cuda", torch.float16)
|
| 188 |
image_pipe.to("cuda")
|
| 189 |
|
| 190 |
-
response = handle_input(user_prompt, image=image, video=video, audio=audio, doc=doc)
|
| 191 |
|
| 192 |
if voice_only:
|
| 193 |
audio_file = play_voice_output(response)
|
|
@@ -195,22 +149,46 @@ def main_interface(user_prompt, image=None, video=None, audio=None, doc=None, vo
|
|
| 195 |
else:
|
| 196 |
return response, None # Return only the text output, no audio
|
| 197 |
|
| 198 |
-
# Gradio
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
|
|
|
|
|
|
|
| 216 |
demo.launch(inline=False)
|
|
|
|
| 3 |
import os
|
| 4 |
import numpy as np
|
| 5 |
from groq import Groq
|
|
|
|
| 6 |
from transformers import AutoModel, AutoTokenizer
|
| 7 |
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
|
| 8 |
from parler_tts import ParlerTTSForConditionalGeneration
|
|
|
|
| 11 |
from langchain_community.vectorstores import Chroma
|
| 12 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 13 |
from langchain.chains import RetrievalQA
|
|
|
|
| 14 |
from PIL import Image
|
| 15 |
from decord import VideoReader, cpu
|
| 16 |
+
from tavily import TavilyClient
|
| 17 |
import requests
|
| 18 |
from huggingface_hub import hf_hub_download
|
| 19 |
from safetensors.torch import load_file
|
| 20 |
|
| 21 |
+
# Initialize models
|
| 22 |
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
| 23 |
MODEL = 'llama3-groq-70b-8192-tool-use-preview'
|
| 24 |
|
|
|
|
| 39 |
image_pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
| 40 |
image_pipe.scheduler = EulerDiscreteScheduler.from_config(image_pipe.scheduler.config, timestep_spacing="trailing")
|
| 41 |
|
| 42 |
+
# Tavily Client
|
| 43 |
+
tavily_client = TavilyClient(api_key="tvly-YOUR_API_KEY")
|
| 44 |
+
|
| 45 |
+
# Voice output function
|
| 46 |
def play_voice_output(response):
|
| 47 |
description = "Jon's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise."
|
| 48 |
input_ids = tts_tokenizer(description, return_tensors="pt").input_ids.to('cuda')
|
|
|
|
| 52 |
sf.write("output.wav", audio_arr, tts_model.config.sampling_rate)
|
| 53 |
return "output.wav"
|
| 54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
# NumPy Calculation function
|
| 56 |
def numpy_calculate(code: str) -> str:
|
| 57 |
try:
|
|
|
|
| 62 |
except Exception as e:
|
| 63 |
return f"An error occurred: {str(e)}"
|
| 64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
# Function to use Langchain for RAG
|
| 66 |
def use_langchain_rag(file_name, file_content, query):
|
| 67 |
# Split the document into chunks
|
|
|
|
| 90 |
frames = [Image.fromarray(v.astype('uint8')) for v in frames]
|
| 91 |
return frames
|
| 92 |
|
| 93 |
+
# Web search function
|
| 94 |
+
def web_search(query):
|
| 95 |
+
answer = tavily_client.qna_search(query=query)
|
| 96 |
+
return answer
|
| 97 |
+
|
| 98 |
+
# Function to handle different input types
|
| 99 |
+
def handle_input(user_prompt, image=None, video=None, audio=None, doc=None, websearch=False):
|
| 100 |
+
# Voice input handling
|
| 101 |
+
if audio:
|
| 102 |
+
transcription = client.audio.transcriptions.create(
|
| 103 |
+
file=(audio.name, audio.read()),
|
| 104 |
+
model="whisper-large-v3"
|
| 105 |
+
)
|
| 106 |
+
user_prompt = transcription.text
|
| 107 |
+
|
| 108 |
+
# If user uploaded an image and text, use MiniCPM model
|
| 109 |
+
if image:
|
| 110 |
+
image = Image.open(image).convert('RGB')
|
| 111 |
+
messages = [{"role": "user", "content": [image, user_prompt]}]
|
| 112 |
+
response = text_model.chat(image=None, msgs=messages, tokenizer=tokenizer)
|
| 113 |
+
return response
|
| 114 |
+
|
| 115 |
+
# Determine which tool to use
|
| 116 |
+
if doc:
|
| 117 |
+
file_content = doc.read().decode('utf-8')
|
| 118 |
+
response = use_langchain_rag(doc.name, file_content, user_prompt)
|
| 119 |
+
elif "calculate" in user_prompt.lower():
|
| 120 |
+
response = numpy_calculate(user_prompt)
|
| 121 |
+
elif "generate" in user_prompt.lower() and ("image" in user_prompt.lower() or "picture" in user_prompt.lower()):
|
| 122 |
+
response = image_pipe(prompt=user_prompt, num_inference_steps=20, guidance_scale=7.5)
|
| 123 |
+
elif websearch:
|
| 124 |
+
response = web_search(user_prompt)
|
| 125 |
+
else:
|
| 126 |
+
chat_completion = client.chat.completions.create(
|
| 127 |
+
messages=[
|
| 128 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
| 129 |
+
{"role": "user", "content": user_prompt}
|
| 130 |
+
],
|
| 131 |
+
model=MODEL,
|
| 132 |
+
)
|
| 133 |
+
response = chat_completion.choices[0].message.content
|
| 134 |
+
|
| 135 |
+
return response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
| 137 |
@spaces.GPU()
|
| 138 |
+
def main_interface(user_prompt, image=None, video=None, audio=None, doc=None, voice_only=False, websearch=False):
|
| 139 |
text_model.to(device='cuda', dtype=torch.bfloat16)
|
| 140 |
tts_model.to("cuda")
|
| 141 |
unet.to("cuda", torch.float16)
|
| 142 |
image_pipe.to("cuda")
|
| 143 |
|
| 144 |
+
response = handle_input(user_prompt, image=image, video=video, audio=audio, doc=doc, websearch=websearch)
|
| 145 |
|
| 146 |
if voice_only:
|
| 147 |
audio_file = play_voice_output(response)
|
|
|
|
| 149 |
else:
|
| 150 |
return response, None # Return only the text output, no audio
|
| 151 |
|
| 152 |
+
# Gradio UI Setup
|
| 153 |
+
def create_ui():
|
| 154 |
+
with gr.Blocks() as demo:
|
| 155 |
+
gr.Markdown("# AI Assistant")
|
| 156 |
+
with gr.Row():
|
| 157 |
+
with gr.Column(scale=2):
|
| 158 |
+
user_prompt = gr.Textbox(placeholder="Type your message here...", lines=1)
|
| 159 |
+
with gr.Column(scale=1):
|
| 160 |
+
image_input = gr.Image(type="filepath", label="Upload an image", elem_id="image-icon")
|
| 161 |
+
video_input = gr.Video(label="Upload a video", elem_id="video-icon")
|
| 162 |
+
audio_input = gr.Audio(type="filepath", label="Upload audio", elem_id="mic-icon")
|
| 163 |
+
doc_input = gr.File(type="filepath", label="Upload a document", elem_id="document-icon")
|
| 164 |
+
voice_only_mode = gr.Checkbox(label="Enable Voice Only Mode", elem_id="voice-only-mode")
|
| 165 |
+
websearch_mode = gr.Checkbox(label="Enable Web Search", elem_id="websearch-mode")
|
| 166 |
+
with gr.Column(scale=1):
|
| 167 |
+
submit = gr.Button("Submit")
|
| 168 |
+
|
| 169 |
+
output_label = gr.Label(label="Output")
|
| 170 |
+
audio_output = gr.Audio(label="Audio Output", visible=False)
|
| 171 |
+
|
| 172 |
+
submit.click(
|
| 173 |
+
fn=main_interface,
|
| 174 |
+
inputs=[user_prompt, image_input, video_input, audio_input, doc_input, voice_only_mode, websearch_mode],
|
| 175 |
+
outputs=[output_label, audio_output] # Expecting a string and audio file
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
# Voice-only mode UI
|
| 179 |
+
voice_only_mode.change(
|
| 180 |
+
lambda x: gr.update(visible=not x),
|
| 181 |
+
inputs=voice_only_mode,
|
| 182 |
+
outputs=[user_prompt, image_input, video_input, doc_input, websearch_mode, submit]
|
| 183 |
+
)
|
| 184 |
+
voice_only_mode.change(
|
| 185 |
+
lambda x: gr.update(visible=x),
|
| 186 |
+
inputs=voice_only_mode,
|
| 187 |
+
outputs=[audio_input]
|
| 188 |
+
)
|
| 189 |
+
|
| 190 |
+
return demo
|
| 191 |
|
| 192 |
+
# Launch the app
|
| 193 |
+
demo = create_ui()
|
| 194 |
demo.launch(inline=False)
|