Update app.py
Browse files
app.py
CHANGED
|
@@ -8,13 +8,11 @@ from transformers import AutoModel, AutoTokenizer
|
|
| 8 |
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
|
| 9 |
from parler_tts import ParlerTTSForConditionalGeneration
|
| 10 |
import soundfile as sf
|
| 11 |
-
from
|
| 12 |
-
from
|
| 13 |
-
from
|
| 14 |
-
from
|
| 15 |
-
from
|
| 16 |
-
from langchain.agents import AgentExecutor, Tool, ZeroShotAgent
|
| 17 |
-
from langchain.llms import OpenAI
|
| 18 |
from PIL import Image
|
| 19 |
from decord import VideoReader, cpu
|
| 20 |
from tavily import TavilyClient
|
|
@@ -89,32 +87,29 @@ def image_generation(query):
|
|
| 89 |
|
| 90 |
# Document Question Answering Tool
|
| 91 |
def doc_question_answering(query, file_path):
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
#
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
# Run the QA process with the groq model
|
| 117 |
-
return qa.run(query)
|
| 118 |
|
| 119 |
# Function to handle different input types and choose the right tool
|
| 120 |
def handle_input(user_prompt, image=None, video=None, audio=None, doc=None, websearch=False):
|
|
@@ -128,53 +123,21 @@ def handle_input(user_prompt, image=None, video=None, audio=None, doc=None, webs
|
|
| 128 |
user_prompt = transcription.text
|
| 129 |
|
| 130 |
tools = [
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
description="Useful for when you need to perform mathematical calculations using NumPy. Provide the calculation you want to perform.",
|
| 135 |
-
),
|
| 136 |
-
Tool(
|
| 137 |
-
name="Web Search",
|
| 138 |
-
func=web_search,
|
| 139 |
-
description="Useful for when you need to find information from the real world.",
|
| 140 |
-
),
|
| 141 |
-
Tool(
|
| 142 |
-
name="Image Generation",
|
| 143 |
-
func=image_generation,
|
| 144 |
-
description="Useful for when you need to generate an image based on a description.",
|
| 145 |
-
),
|
| 146 |
]
|
| 147 |
|
| 148 |
if doc:
|
| 149 |
tools.append(
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
description="Useful for when you need to answer questions about the uploaded document.",
|
| 154 |
)
|
| 155 |
)
|
| 156 |
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
suffix = """Begin!"
|
| 160 |
-
|
| 161 |
-
{chat_history}
|
| 162 |
-
Human: {input}
|
| 163 |
-
AI: I will do my best to assist you. Let me think about this step-by-step:"""
|
| 164 |
-
|
| 165 |
-
prompt = ZeroShotAgent.create_prompt(
|
| 166 |
-
tools,
|
| 167 |
-
prefix=prefix,
|
| 168 |
-
suffix=suffix,
|
| 169 |
-
input_variables=["input", "chat_history"]
|
| 170 |
-
)
|
| 171 |
-
|
| 172 |
-
llm = Groq(model=MODEL)
|
| 173 |
-
llm_chain = LLMChain(llm=llm, prompt=prompt)
|
| 174 |
-
|
| 175 |
-
agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True)
|
| 176 |
-
|
| 177 |
-
agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True)
|
| 178 |
|
| 179 |
if image:
|
| 180 |
image = Image.open(image).convert('RGB')
|
|
@@ -183,9 +146,9 @@ def handle_input(user_prompt, image=None, video=None, audio=None, doc=None, webs
|
|
| 183 |
return response
|
| 184 |
|
| 185 |
if websearch:
|
| 186 |
-
response =
|
| 187 |
else:
|
| 188 |
-
response =
|
| 189 |
|
| 190 |
return response
|
| 191 |
|
|
@@ -245,4 +208,4 @@ def main_interface(user_prompt, image=None, audio=None, doc=None, voice_only=Fal
|
|
| 245 |
|
| 246 |
# Launch the UI
|
| 247 |
demo = create_ui()
|
| 248 |
-
demo.launch()
|
|
|
|
| 8 |
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
|
| 9 |
from parler_tts import ParlerTTSForConditionalGeneration
|
| 10 |
import soundfile as sf
|
| 11 |
+
from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper
|
| 12 |
+
from llama_index.embeddings import GroqEmbedding
|
| 13 |
+
from llama_index.llms import GroqLLM
|
| 14 |
+
from llama_index.agent import ReActAgent
|
| 15 |
+
from llama_index.tools import FunctionTool
|
|
|
|
|
|
|
| 16 |
from PIL import Image
|
| 17 |
from decord import VideoReader, cpu
|
| 18 |
from tavily import TavilyClient
|
|
|
|
| 87 |
|
| 88 |
# Document Question Answering Tool
|
| 89 |
def doc_question_answering(query, file_path):
|
| 90 |
+
# Load documents
|
| 91 |
+
documents = SimpleDirectoryReader(input_files=[file_path]).load_data()
|
| 92 |
+
|
| 93 |
+
# Initialize Groq embedding model
|
| 94 |
+
embed_model = GroqEmbedding()
|
| 95 |
+
|
| 96 |
+
# Initialize Groq LLM
|
| 97 |
+
llm_predictor = LLMPredictor(llm=GroqLLM(model_name=MODEL))
|
| 98 |
+
|
| 99 |
+
# Initialize prompt helper
|
| 100 |
+
prompt_helper = PromptHelper()
|
| 101 |
+
|
| 102 |
+
# Create index
|
| 103 |
+
index = GPTSimpleVectorIndex.from_documents(
|
| 104 |
+
documents,
|
| 105 |
+
embed_model=embed_model,
|
| 106 |
+
llm_predictor=llm_predictor,
|
| 107 |
+
prompt_helper=prompt_helper
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
# Query the index
|
| 111 |
+
response = index.query(query)
|
| 112 |
+
return response.response
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
# Function to handle different input types and choose the right tool
|
| 115 |
def handle_input(user_prompt, image=None, video=None, audio=None, doc=None, websearch=False):
|
|
|
|
| 123 |
user_prompt = transcription.text
|
| 124 |
|
| 125 |
tools = [
|
| 126 |
+
FunctionTool.from_defaults(fn=numpy_code_calculator, name="Numpy Code Calculator"),
|
| 127 |
+
FunctionTool.from_defaults(fn=web_search, name="Web Search"),
|
| 128 |
+
FunctionTool.from_defaults(fn=image_generation, name="Image Generation"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
]
|
| 130 |
|
| 131 |
if doc:
|
| 132 |
tools.append(
|
| 133 |
+
FunctionTool.from_defaults(
|
| 134 |
+
fn=lambda query: doc_question_answering(query, doc.name),
|
| 135 |
+
name="Document Question Answering"
|
|
|
|
| 136 |
)
|
| 137 |
)
|
| 138 |
|
| 139 |
+
llm = GroqLLM(model_name=MODEL)
|
| 140 |
+
agent = ReActAgent.from_tools(tools, llm=llm, verbose=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
if image:
|
| 143 |
image = Image.open(image).convert('RGB')
|
|
|
|
| 146 |
return response
|
| 147 |
|
| 148 |
if websearch:
|
| 149 |
+
response = agent.chat(f"{user_prompt} Use the Web Search tool if necessary.")
|
| 150 |
else:
|
| 151 |
+
response = agent.chat(user_prompt)
|
| 152 |
|
| 153 |
return response
|
| 154 |
|
|
|
|
| 208 |
|
| 209 |
# Launch the UI
|
| 210 |
demo = create_ui()
|
| 211 |
+
demo.launch()
|