Update app.py
Browse files
app.py
CHANGED
|
@@ -8,16 +8,20 @@ from transformers import AutoModel, AutoTokenizer
|
|
| 8 |
from diffusers import StableDiffusion3Pipeline
|
| 9 |
from parler_tts import ParlerTTSForConditionalGeneration
|
| 10 |
import soundfile as sf
|
| 11 |
-
from
|
| 12 |
-
from
|
| 13 |
-
from
|
| 14 |
from PIL import Image
|
| 15 |
from tavily import TavilyClient
|
| 16 |
import requests
|
| 17 |
from huggingface_hub import hf_hub_download
|
| 18 |
from safetensors.torch import load_file
|
| 19 |
-
from
|
| 20 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
# Initialize models and clients
|
| 23 |
MODEL = 'llama3-groq-70b-8192-tool-use-preview'
|
|
@@ -48,38 +52,71 @@ def play_voice_output(response):
|
|
| 48 |
return "output.wav"
|
| 49 |
|
| 50 |
# NumPy Code Calculator Tool
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
# Web Search Tool
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
# Image Generation Tool
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
# Document Question Answering Tool
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
# Function to handle different input types and choose the right tool
|
| 85 |
def handle_input(user_prompt, image=None, audio=None, websearch=False, document=None):
|
|
@@ -93,43 +130,38 @@ def handle_input(user_prompt, image=None, audio=None, websearch=False, document=
|
|
| 93 |
user_prompt = transcription.text
|
| 94 |
|
| 95 |
tools = [
|
| 96 |
-
|
| 97 |
-
|
| 98 |
]
|
| 99 |
|
| 100 |
# Add the web search tool only if websearch mode is enabled
|
| 101 |
if websearch:
|
| 102 |
-
tools.append(
|
| 103 |
|
| 104 |
# Add the document question answering tool only if a document is provided
|
| 105 |
if document:
|
| 106 |
-
|
| 107 |
-
tools.append(FunctionTool.from_defaults(fn=document_question_answering, name="Document", docs=docs))
|
| 108 |
|
| 109 |
-
llm =
|
| 110 |
-
agent =
|
|
|
|
| 111 |
|
| 112 |
if image:
|
| 113 |
image = Image.open(image).convert('RGB')
|
| 114 |
messages = [{"role": "user", "content": [image, user_prompt]}]
|
| 115 |
response = vqa_model.chat(image=None, msgs=messages, tokenizer=tokenizer)
|
| 116 |
else:
|
| 117 |
-
response =
|
| 118 |
-
|
| 119 |
-
# Extract the content from AgentChatResponse to return as a string
|
| 120 |
-
if isinstance(response, AgentChatResponse):
|
| 121 |
-
response = response.response
|
| 122 |
|
| 123 |
return response
|
| 124 |
|
| 125 |
-
|
| 126 |
-
# Gradio UI Setup
|
| 127 |
def create_ui():
|
| 128 |
with gr.Blocks(css="""
|
| 129 |
/* Overall Styling */
|
| 130 |
body {
|
| 131 |
-
font-family: '
|
| 132 |
-
background
|
| 133 |
margin: 0;
|
| 134 |
padding: 0;
|
| 135 |
color: #333;
|
|
@@ -139,8 +171,14 @@ def create_ui():
|
|
| 139 |
.gradio-container h1 {
|
| 140 |
text-align: center;
|
| 141 |
padding: 20px 0;
|
| 142 |
-
background
|
| 143 |
color: white;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
}
|
| 145 |
|
| 146 |
/* Input Area Styling */
|
|
@@ -149,6 +187,10 @@ def create_ui():
|
|
| 149 |
justify-content: space-around;
|
| 150 |
align-items: center;
|
| 151 |
padding: 20px;
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
}
|
| 153 |
|
| 154 |
.gradio-container .gr-column {
|
|
@@ -159,40 +201,135 @@ def create_ui():
|
|
| 159 |
/* Textbox Styling */
|
| 160 |
.gradio-container textarea {
|
| 161 |
width: calc(100% - 20px);
|
| 162 |
-
padding:
|
| 163 |
-
border: 2px solid #
|
| 164 |
-
border-radius:
|
| 165 |
-
font-size:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
}
|
| 167 |
|
| 168 |
/* Button Styling */
|
| 169 |
.gradio-container button {
|
| 170 |
-
background
|
| 171 |
color: white;
|
| 172 |
-
padding:
|
| 173 |
border: none;
|
| 174 |
-
border-radius:
|
| 175 |
cursor: pointer;
|
| 176 |
-
font-size:
|
| 177 |
-
|
|
|
|
|
|
|
| 178 |
}
|
| 179 |
|
| 180 |
.gradio-container button:hover {
|
| 181 |
-
background
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
}
|
| 183 |
|
| 184 |
/* Output Area Styling */
|
| 185 |
.gradio-container .output-area {
|
| 186 |
padding: 20px;
|
| 187 |
text-align: center;
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
}
|
| 189 |
|
| 190 |
/* Image Styling */
|
| 191 |
.gradio-container img {
|
| 192 |
max-width: 100%;
|
| 193 |
height: auto;
|
| 194 |
-
border-radius:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
""") as demo:
|
| 197 |
gr.Markdown("# AI Assistant")
|
| 198 |
with gr.Row():
|
|
@@ -257,7 +394,6 @@ def main_interface(user_prompt, image=None, audio=None, voice_only=False, websea
|
|
| 257 |
else:
|
| 258 |
return response, None
|
| 259 |
|
| 260 |
-
|
| 261 |
# Launch the UI
|
| 262 |
demo = create_ui()
|
| 263 |
demo.launch()
|
|
|
|
| 8 |
from diffusers import StableDiffusion3Pipeline
|
| 9 |
from parler_tts import ParlerTTSForConditionalGeneration
|
| 10 |
import soundfile as sf
|
| 11 |
+
from langchain.agents import AgentExecutor, create_react_agent
|
| 12 |
+
from langchain.tools import BaseTool
|
| 13 |
+
from langchain_groq import ChatGroq
|
| 14 |
from PIL import Image
|
| 15 |
from tavily import TavilyClient
|
| 16 |
import requests
|
| 17 |
from huggingface_hub import hf_hub_download
|
| 18 |
from safetensors.torch import load_file
|
| 19 |
+
from langchain.schema import AIMessage
|
| 20 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 21 |
+
from langchain.vectorstores import FAISS
|
| 22 |
+
from langchain.document_loaders import TextLoader
|
| 23 |
+
from langchain.text_splitter import CharacterTextSplitter
|
| 24 |
+
from langchain.chains import RetrievalQA
|
| 25 |
|
| 26 |
# Initialize models and clients
|
| 27 |
MODEL = 'llama3-groq-70b-8192-tool-use-preview'
|
|
|
|
| 52 |
return "output.wav"
|
| 53 |
|
| 54 |
# NumPy Code Calculator Tool
|
| 55 |
+
class NumpyCodeCalculator(BaseTool):
|
| 56 |
+
name = "Numpy"
|
| 57 |
+
description = "Useful for performing numpy computations"
|
| 58 |
+
|
| 59 |
+
def _run(self, query: str) -> str:
|
| 60 |
+
try:
|
| 61 |
+
local_dict = {"np": np}
|
| 62 |
+
exec(query, local_dict)
|
| 63 |
+
result = local_dict.get("result", "No result found")
|
| 64 |
+
return str(result)
|
| 65 |
+
except Exception as e:
|
| 66 |
+
return f"Error: {e}"
|
| 67 |
|
| 68 |
# Web Search Tool
|
| 69 |
+
class WebSearch(BaseTool):
|
| 70 |
+
name = "Web"
|
| 71 |
+
description = "Useful for searching the web for information"
|
| 72 |
+
|
| 73 |
+
def _run(self, query: str) -> str:
|
| 74 |
+
answer = tavily_client.qna_search(query=query)
|
| 75 |
+
return answer
|
| 76 |
|
| 77 |
# Image Generation Tool
|
| 78 |
+
class ImageGeneration(BaseTool):
|
| 79 |
+
name = "Image"
|
| 80 |
+
description = "Useful for generating images based on text descriptions"
|
| 81 |
+
|
| 82 |
+
def _run(self, query: str) -> str:
|
| 83 |
+
image = pipe(
|
| 84 |
+
query,
|
| 85 |
+
negative_prompt="",
|
| 86 |
+
num_inference_steps=15,
|
| 87 |
+
guidance_scale=7.0,
|
| 88 |
+
).images[0]
|
| 89 |
+
image.save("output.jpg")
|
| 90 |
+
return "output.jpg"
|
| 91 |
|
| 92 |
# Document Question Answering Tool
|
| 93 |
+
class DocumentQuestionAnswering(BaseTool):
|
| 94 |
+
name = "Document"
|
| 95 |
+
description = "Useful for answering questions about a specific document"
|
| 96 |
+
|
| 97 |
+
def __init__(self, document):
|
| 98 |
+
super().__init__()
|
| 99 |
+
self.document = document
|
| 100 |
+
self.qa_chain = self._setup_qa_chain()
|
| 101 |
+
|
| 102 |
+
def _setup_qa_chain(self):
|
| 103 |
+
loader = TextLoader(self.document)
|
| 104 |
+
documents = loader.load()
|
| 105 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
| 106 |
+
texts = text_splitter.split_documents(documents)
|
| 107 |
+
embeddings = HuggingFaceEmbeddings()
|
| 108 |
+
db = FAISS.from_documents(texts, embeddings)
|
| 109 |
+
retriever = db.as_retriever()
|
| 110 |
+
qa_chain = RetrievalQA.from_chain_type(
|
| 111 |
+
llm=ChatGroq(model=MODEL, api_key=os.environ.get("GROQ_API_KEY")),
|
| 112 |
+
chain_type="stuff",
|
| 113 |
+
retriever=retriever,
|
| 114 |
+
)
|
| 115 |
+
return qa_chain
|
| 116 |
+
|
| 117 |
+
def _run(self, query: str) -> str:
|
| 118 |
+
response = self.qa_chain.run(query)
|
| 119 |
+
return str(response)
|
| 120 |
|
| 121 |
# Function to handle different input types and choose the right tool
|
| 122 |
def handle_input(user_prompt, image=None, audio=None, websearch=False, document=None):
|
|
|
|
| 130 |
user_prompt = transcription.text
|
| 131 |
|
| 132 |
tools = [
|
| 133 |
+
NumpyCodeCalculator(),
|
| 134 |
+
ImageGeneration(),
|
| 135 |
]
|
| 136 |
|
| 137 |
# Add the web search tool only if websearch mode is enabled
|
| 138 |
if websearch:
|
| 139 |
+
tools.append(WebSearch())
|
| 140 |
|
| 141 |
# Add the document question answering tool only if a document is provided
|
| 142 |
if document:
|
| 143 |
+
tools.append(DocumentQuestionAnswering(document))
|
|
|
|
| 144 |
|
| 145 |
+
llm = ChatGroq(model=MODEL, api_key=os.environ.get("GROQ_API_KEY"))
|
| 146 |
+
agent = create_react_agent(llm, tools, verbose=True)
|
| 147 |
+
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
|
| 148 |
|
| 149 |
if image:
|
| 150 |
image = Image.open(image).convert('RGB')
|
| 151 |
messages = [{"role": "user", "content": [image, user_prompt]}]
|
| 152 |
response = vqa_model.chat(image=None, msgs=messages, tokenizer=tokenizer)
|
| 153 |
else:
|
| 154 |
+
response = agent_executor.run(user_prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
|
| 156 |
return response
|
| 157 |
|
| 158 |
+
|
|
|
|
| 159 |
def create_ui():
|
| 160 |
with gr.Blocks(css="""
|
| 161 |
/* Overall Styling */
|
| 162 |
body {
|
| 163 |
+
font-family: 'Poppins', sans-serif;
|
| 164 |
+
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
|
| 165 |
margin: 0;
|
| 166 |
padding: 0;
|
| 167 |
color: #333;
|
|
|
|
| 171 |
.gradio-container h1 {
|
| 172 |
text-align: center;
|
| 173 |
padding: 20px 0;
|
| 174 |
+
background: linear-gradient(45deg, #007bff, #00c6ff);
|
| 175 |
color: white;
|
| 176 |
+
font-size: 2.5em;
|
| 177 |
+
font-weight: bold;
|
| 178 |
+
letter-spacing: 1px;
|
| 179 |
+
text-transform: uppercase;
|
| 180 |
+
margin: 0;
|
| 181 |
+
box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.2);
|
| 182 |
}
|
| 183 |
|
| 184 |
/* Input Area Styling */
|
|
|
|
| 187 |
justify-content: space-around;
|
| 188 |
align-items: center;
|
| 189 |
padding: 20px;
|
| 190 |
+
background-color: white;
|
| 191 |
+
border-radius: 10px;
|
| 192 |
+
box-shadow: 0px 6px 12px rgba(0, 0, 0, 0.1);
|
| 193 |
+
margin-bottom: 20px;
|
| 194 |
}
|
| 195 |
|
| 196 |
.gradio-container .gr-column {
|
|
|
|
| 201 |
/* Textbox Styling */
|
| 202 |
.gradio-container textarea {
|
| 203 |
width: calc(100% - 20px);
|
| 204 |
+
padding: 15px;
|
| 205 |
+
border: 2px solid #007bff;
|
| 206 |
+
border-radius: 8px;
|
| 207 |
+
font-size: 1.1em;
|
| 208 |
+
transition: border-color 0.3s, box-shadow 0.3s;
|
| 209 |
+
}
|
| 210 |
+
|
| 211 |
+
.gradio-container textarea:focus {
|
| 212 |
+
border-color: #00c6ff;
|
| 213 |
+
box-shadow: 0px 0px 8px rgba(0, 198, 255, 0.5);
|
| 214 |
+
outline: none;
|
| 215 |
}
|
| 216 |
|
| 217 |
/* Button Styling */
|
| 218 |
.gradio-container button {
|
| 219 |
+
background: linear-gradient(45deg, #007bff, #00c6ff);
|
| 220 |
color: white;
|
| 221 |
+
padding: 15px 25px;
|
| 222 |
border: none;
|
| 223 |
+
border-radius: 8px;
|
| 224 |
cursor: pointer;
|
| 225 |
+
font-size: 1.2em;
|
| 226 |
+
font-weight: bold;
|
| 227 |
+
transition: background 0.3s, transform 0.3s;
|
| 228 |
+
box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.1);
|
| 229 |
}
|
| 230 |
|
| 231 |
.gradio-container button:hover {
|
| 232 |
+
background: linear-gradient(45deg, #0056b3, #009bff);
|
| 233 |
+
transform: translateY(-3px);
|
| 234 |
+
}
|
| 235 |
+
|
| 236 |
+
.gradio-container button:active {
|
| 237 |
+
transform: translateY(0);
|
| 238 |
}
|
| 239 |
|
| 240 |
/* Output Area Styling */
|
| 241 |
.gradio-container .output-area {
|
| 242 |
padding: 20px;
|
| 243 |
text-align: center;
|
| 244 |
+
background-color: #f7f9fc;
|
| 245 |
+
border-radius: 10px;
|
| 246 |
+
box-shadow: 0px 6px 12px rgba(0, 0, 0, 0.1);
|
| 247 |
+
margin-top: 20px;
|
| 248 |
}
|
| 249 |
|
| 250 |
/* Image Styling */
|
| 251 |
.gradio-container img {
|
| 252 |
max-width: 100%;
|
| 253 |
height: auto;
|
| 254 |
+
border-radius: 10px;
|
| 255 |
+
box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.1);
|
| 256 |
+
transition: transform 0.3s, box-shadow 0.3s;
|
| 257 |
+
}
|
| 258 |
+
|
| 259 |
+
.gradio-container img:hover {
|
| 260 |
+
transform: scale(1.05);
|
| 261 |
+
box-shadow: 0px 6px 12px rgba(0, 0, 0, 0.2);
|
| 262 |
+
}
|
| 263 |
+
|
| 264 |
+
/* Checkbox Styling */
|
| 265 |
+
.gradio-container input[type="checkbox"] {
|
| 266 |
+
width: 20px;
|
| 267 |
+
height: 20px;
|
| 268 |
+
cursor: pointer;
|
| 269 |
+
accent-color: #007bff;
|
| 270 |
+
transition: transform 0.3s;
|
| 271 |
+
}
|
| 272 |
+
|
| 273 |
+
.gradio-container input[type="checkbox"]:checked {
|
| 274 |
+
transform: scale(1.2);
|
| 275 |
+
}
|
| 276 |
+
|
| 277 |
+
/* Audio and Document Upload Styling */
|
| 278 |
+
.gradio-container .gr-file-upload input[type="file"] {
|
| 279 |
+
width: 100%;
|
| 280 |
+
padding: 10px;
|
| 281 |
+
border: 2px solid #007bff;
|
| 282 |
+
border-radius: 8px;
|
| 283 |
+
cursor: pointer;
|
| 284 |
+
background-color: white;
|
| 285 |
+
transition: border-color 0.3s, background-color 0.3s;
|
| 286 |
+
}
|
| 287 |
+
|
| 288 |
+
.gradio-container .gr-file-upload input[type="file"]:hover {
|
| 289 |
+
border-color: #00c6ff;
|
| 290 |
+
background-color: #f0f8ff;
|
| 291 |
+
}
|
| 292 |
+
|
| 293 |
+
/* Advanced Tooltip Styling */
|
| 294 |
+
.gradio-container .gr-tooltip {
|
| 295 |
+
position: relative;
|
| 296 |
+
display: inline-block;
|
| 297 |
+
cursor: pointer;
|
| 298 |
+
}
|
| 299 |
+
|
| 300 |
+
.gradio-container .gr-tooltip .tooltiptext {
|
| 301 |
+
visibility: hidden;
|
| 302 |
+
width: 200px;
|
| 303 |
+
background-color: black;
|
| 304 |
+
color: #fff;
|
| 305 |
+
text-align: center;
|
| 306 |
+
border-radius: 6px;
|
| 307 |
+
padding: 5px;
|
| 308 |
+
position: absolute;
|
| 309 |
+
z-index: 1;
|
| 310 |
+
bottom: 125%;
|
| 311 |
+
left: 50%;
|
| 312 |
+
margin-left: -100px;
|
| 313 |
+
opacity: 0;
|
| 314 |
+
transition: opacity 0.3s;
|
| 315 |
+
}
|
| 316 |
+
|
| 317 |
+
.gradio-container .gr-tooltip:hover .tooltiptext {
|
| 318 |
+
visibility: visible;
|
| 319 |
+
opacity: 1;
|
| 320 |
}
|
| 321 |
+
|
| 322 |
+
/* Footer Styling */
|
| 323 |
+
.gradio-container footer {
|
| 324 |
+
text-align: center;
|
| 325 |
+
padding: 10px;
|
| 326 |
+
background: #007bff;
|
| 327 |
+
color: white;
|
| 328 |
+
font-size: 0.9em;
|
| 329 |
+
border-radius: 0 0 10px 10px;
|
| 330 |
+
box-shadow: 0px -2px 8px rgba(0, 0, 0, 0.1);
|
| 331 |
+
}
|
| 332 |
+
|
| 333 |
""") as demo:
|
| 334 |
gr.Markdown("# AI Assistant")
|
| 335 |
with gr.Row():
|
|
|
|
| 394 |
else:
|
| 395 |
return response, None
|
| 396 |
|
|
|
|
| 397 |
# Launch the UI
|
| 398 |
demo = create_ui()
|
| 399 |
demo.launch()
|