Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,7 @@
|
|
| 1 |
import torch
|
| 2 |
import spaces
|
|
|
|
|
|
|
| 3 |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
| 4 |
from peft import LoraConfig, PeftModel, get_peft_model
|
| 5 |
import gradio as gr
|
|
@@ -18,7 +20,8 @@ bnb_config = BitsAndBytesConfig(
|
|
| 18 |
# Load base model with quantization (replace 'your-username' if needed)
|
| 19 |
base_model = AutoModelForCausalLM.from_pretrained(
|
| 20 |
"meta-llama/Meta-Llama-3-8B-Instruct", # Replace with actual base model
|
| 21 |
-
quantization_config=bnb_config,
|
|
|
|
| 22 |
)
|
| 23 |
|
| 24 |
# Apply LoRA adapters
|
|
|
|
| 1 |
import torch
|
| 2 |
import spaces
|
| 3 |
+
import os
|
| 4 |
+
HF_TOKEN = os.environ["HF_TOKEN"]
|
| 5 |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
| 6 |
from peft import LoraConfig, PeftModel, get_peft_model
|
| 7 |
import gradio as gr
|
|
|
|
| 20 |
# Load base model with quantization (replace 'your-username' if needed)
|
| 21 |
base_model = AutoModelForCausalLM.from_pretrained(
|
| 22 |
"meta-llama/Meta-Llama-3-8B-Instruct", # Replace with actual base model
|
| 23 |
+
quantization_config=bnb_config,
|
| 24 |
+
hf_token=HF_TOKEN,
|
| 25 |
)
|
| 26 |
|
| 27 |
# Apply LoRA adapters
|