Update app.py
Browse files
app.py
CHANGED
|
@@ -8,13 +8,10 @@ from transformers import AutoModel, AutoTokenizer
|
|
| 8 |
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
|
| 9 |
from parler_tts import ParlerTTSForConditionalGeneration
|
| 10 |
import soundfile as sf
|
| 11 |
-
from llama_index import VectorStoreIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper
|
| 12 |
-
from llama_index.embeddings import GroqEmbedding
|
| 13 |
-
from llama_index.llms import GroqLLM
|
| 14 |
from llama_index.agent import ReActAgent
|
| 15 |
from llama_index.tools import FunctionTool
|
|
|
|
| 16 |
from PIL import Image
|
| 17 |
-
from decord import VideoReader, cpu
|
| 18 |
from tavily import TavilyClient
|
| 19 |
import requests
|
| 20 |
from huggingface_hub import hf_hub_download
|
|
@@ -85,34 +82,8 @@ def image_generation(query):
|
|
| 85 |
image.save("output.jpg")
|
| 86 |
return "output.jpg"
|
| 87 |
|
| 88 |
-
# Document Question Answering Tool
|
| 89 |
-
def doc_question_answering(query, file_path):
|
| 90 |
-
# Load documents
|
| 91 |
-
documents = SimpleDirectoryReader(input_files=[file_path]).load_data()
|
| 92 |
-
|
| 93 |
-
# Initialize Groq embedding model
|
| 94 |
-
embed_model = GroqEmbedding()
|
| 95 |
-
|
| 96 |
-
# Initialize Groq LLM
|
| 97 |
-
llm_predictor = LLMPredictor(llm=GroqLLM(model_name=MODEL))
|
| 98 |
-
|
| 99 |
-
# Initialize prompt helper
|
| 100 |
-
prompt_helper = PromptHelper()
|
| 101 |
-
|
| 102 |
-
# Create index
|
| 103 |
-
index = VectorStoreIndex.from_documents(
|
| 104 |
-
documents,
|
| 105 |
-
embed_model=embed_model,
|
| 106 |
-
llm_predictor=llm_predictor,
|
| 107 |
-
prompt_helper=prompt_helper
|
| 108 |
-
)
|
| 109 |
-
|
| 110 |
-
# Query the index
|
| 111 |
-
response = index.query(query)
|
| 112 |
-
return response.response
|
| 113 |
-
|
| 114 |
# Function to handle different input types and choose the right tool
|
| 115 |
-
def handle_input(user_prompt, image=None,
|
| 116 |
if audio:
|
| 117 |
if isinstance(audio, str):
|
| 118 |
audio = open(audio, "rb")
|
|
@@ -128,14 +99,6 @@ def handle_input(user_prompt, image=None, video=None, audio=None, doc=None, webs
|
|
| 128 |
FunctionTool.from_defaults(fn=image_generation, name="Image Generation"),
|
| 129 |
]
|
| 130 |
|
| 131 |
-
if doc:
|
| 132 |
-
tools.append(
|
| 133 |
-
FunctionTool.from_defaults(
|
| 134 |
-
fn=lambda query: doc_question_answering(query, doc.name),
|
| 135 |
-
name="Document Question Answering"
|
| 136 |
-
)
|
| 137 |
-
)
|
| 138 |
-
|
| 139 |
llm = GroqLLM(model_name=MODEL)
|
| 140 |
agent = ReActAgent.from_tools(tools, llm=llm, verbose=True)
|
| 141 |
|
|
@@ -162,7 +125,6 @@ def create_ui():
|
|
| 162 |
with gr.Column(scale=1):
|
| 163 |
image_input = gr.Image(type="filepath", label="Upload an image", elem_id="image-icon")
|
| 164 |
audio_input = gr.Audio(type="filepath", label="Upload audio", elem_id="mic-icon")
|
| 165 |
-
doc_input = gr.File(type="filepath", label="Upload a document", elem_id="document-icon")
|
| 166 |
voice_only_mode = gr.Checkbox(label="Enable Voice Only Mode", elem_id="voice-only-mode")
|
| 167 |
websearch_mode = gr.Checkbox(label="Enable Web Search", elem_id="websearch-mode")
|
| 168 |
with gr.Column(scale=1):
|
|
@@ -173,14 +135,14 @@ def create_ui():
|
|
| 173 |
|
| 174 |
submit.click(
|
| 175 |
fn=main_interface,
|
| 176 |
-
inputs=[user_prompt, image_input, audio_input,
|
| 177 |
outputs=[output_label, audio_output]
|
| 178 |
)
|
| 179 |
|
| 180 |
voice_only_mode.change(
|
| 181 |
lambda x: gr.update(visible=not x),
|
| 182 |
inputs=voice_only_mode,
|
| 183 |
-
outputs=[user_prompt, image_input,
|
| 184 |
)
|
| 185 |
voice_only_mode.change(
|
| 186 |
lambda x: gr.update(visible=x),
|
|
@@ -192,13 +154,13 @@ def create_ui():
|
|
| 192 |
|
| 193 |
# Main interface function
|
| 194 |
@spaces.GPU()
|
| 195 |
-
def main_interface(user_prompt, image=None, audio=None,
|
| 196 |
vqa_model.to(device='cuda', dtype=torch.bfloat16)
|
| 197 |
tts_model.to("cuda")
|
| 198 |
unet.to("cuda")
|
| 199 |
image_pipe.to("cuda")
|
| 200 |
|
| 201 |
-
response = handle_input(user_prompt, image=image, audio=audio,
|
| 202 |
|
| 203 |
if voice_only:
|
| 204 |
audio_output = play_voice_output(response)
|
|
|
|
| 8 |
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
|
| 9 |
from parler_tts import ParlerTTSForConditionalGeneration
|
| 10 |
import soundfile as sf
|
|
|
|
|
|
|
|
|
|
| 11 |
from llama_index.agent import ReActAgent
|
| 12 |
from llama_index.tools import FunctionTool
|
| 13 |
+
from llama_index.llms import GroqLLM
|
| 14 |
from PIL import Image
|
|
|
|
| 15 |
from tavily import TavilyClient
|
| 16 |
import requests
|
| 17 |
from huggingface_hub import hf_hub_download
|
|
|
|
| 82 |
image.save("output.jpg")
|
| 83 |
return "output.jpg"
|
| 84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
# Function to handle different input types and choose the right tool
|
| 86 |
+
def handle_input(user_prompt, image=None, audio=None, websearch=False):
|
| 87 |
if audio:
|
| 88 |
if isinstance(audio, str):
|
| 89 |
audio = open(audio, "rb")
|
|
|
|
| 99 |
FunctionTool.from_defaults(fn=image_generation, name="Image Generation"),
|
| 100 |
]
|
| 101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
llm = GroqLLM(model_name=MODEL)
|
| 103 |
agent = ReActAgent.from_tools(tools, llm=llm, verbose=True)
|
| 104 |
|
|
|
|
| 125 |
with gr.Column(scale=1):
|
| 126 |
image_input = gr.Image(type="filepath", label="Upload an image", elem_id="image-icon")
|
| 127 |
audio_input = gr.Audio(type="filepath", label="Upload audio", elem_id="mic-icon")
|
|
|
|
| 128 |
voice_only_mode = gr.Checkbox(label="Enable Voice Only Mode", elem_id="voice-only-mode")
|
| 129 |
websearch_mode = gr.Checkbox(label="Enable Web Search", elem_id="websearch-mode")
|
| 130 |
with gr.Column(scale=1):
|
|
|
|
| 135 |
|
| 136 |
submit.click(
|
| 137 |
fn=main_interface,
|
| 138 |
+
inputs=[user_prompt, image_input, audio_input, voice_only_mode, websearch_mode],
|
| 139 |
outputs=[output_label, audio_output]
|
| 140 |
)
|
| 141 |
|
| 142 |
voice_only_mode.change(
|
| 143 |
lambda x: gr.update(visible=not x),
|
| 144 |
inputs=voice_only_mode,
|
| 145 |
+
outputs=[user_prompt, image_input, websearch_mode, submit]
|
| 146 |
)
|
| 147 |
voice_only_mode.change(
|
| 148 |
lambda x: gr.update(visible=x),
|
|
|
|
| 154 |
|
| 155 |
# Main interface function
|
| 156 |
@spaces.GPU()
|
| 157 |
+
def main_interface(user_prompt, image=None, audio=None, voice_only=False, websearch=False):
|
| 158 |
vqa_model.to(device='cuda', dtype=torch.bfloat16)
|
| 159 |
tts_model.to("cuda")
|
| 160 |
unet.to("cuda")
|
| 161 |
image_pipe.to("cuda")
|
| 162 |
|
| 163 |
+
response = handle_input(user_prompt, image=image, audio=audio, websearch=websearch)
|
| 164 |
|
| 165 |
if voice_only:
|
| 166 |
audio_output = play_voice_output(response)
|