Update app.py
Browse files
app.py
CHANGED
|
@@ -1,154 +1,154 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import re
|
| 3 |
-
from urllib.parse import urlparse
|
| 4 |
-
import csv
|
| 5 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
| 6 |
-
import torch
|
| 7 |
-
#URL model
|
| 8 |
-
url_tokenizer = AutoTokenizer.from_pretrained("najla45/phishing_detection_fine_tuned_bert")
|
| 9 |
-
url_model = AutoModelForSequenceClassification.from_pretrained("najla45/phishing_detection_fine_tuned_bert")
|
| 10 |
-
url_classifier = pipeline("text-classification", model=url_model, tokenizer=url_tokenizer)
|
| 11 |
-
|
| 12 |
-
#email model
|
| 13 |
-
email_tokenizer = AutoTokenizer.from_pretrained("cybersectony/phishing-email-detection-distilbert_v2.4.1")
|
| 14 |
-
email_model = AutoModelForSequenceClassification.from_pretrained("cybersectony/phishing-email-detection-distilbert_v2.4.1")
|
| 15 |
-
|
| 16 |
-
#logic for checking the state of url
|
| 17 |
-
def is_phishing_url(url):
|
| 18 |
-
suspicious_keywords = ['secure', 'account', 'update', 'free', 'login', 'verify', 'banking']
|
| 19 |
-
domain = urlparse(url).netloc
|
| 20 |
-
path = urlparse(url).path
|
| 21 |
-
|
| 22 |
-
score = 0
|
| 23 |
-
if re.match(r'https?://\d{1,3}(\.\d{1,3}){3}', url):
|
| 24 |
-
score += 2
|
| 25 |
-
if '-' in domain:
|
| 26 |
-
score += 1
|
| 27 |
-
if not url.startswith("https://"):
|
| 28 |
-
score += 3
|
| 29 |
-
if any(keyword in url.lower() for keyword in suspicious_keywords):
|
| 30 |
-
score += 2
|
| 31 |
-
if len(url) > 75:
|
| 32 |
-
score += 1
|
| 33 |
-
if '@' in url:
|
| 34 |
-
score += 2
|
| 35 |
-
|
| 36 |
-
return score
|
| 37 |
-
|
| 38 |
-
#logic checking for phishing email
|
| 39 |
-
def predict_email(email_text):
|
| 40 |
-
inputs = email_tokenizer(email_text, return_tensors="pt", truncation=True, max_length=512)
|
| 41 |
-
with torch.no_grad():
|
| 42 |
-
outputs = email_model(**inputs)
|
| 43 |
-
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)[0].tolist()
|
| 44 |
-
|
| 45 |
-
labels = {
|
| 46 |
-
"legitimate_email": probs[0],
|
| 47 |
-
"phishing_url": probs[1],
|
| 48 |
-
"legitimate_url": probs[2],
|
| 49 |
-
"phishing_url_alt": probs[3]
|
| 50 |
-
}
|
| 51 |
-
|
| 52 |
-
max_label, max_score = max(labels.items(), key=lambda x: x[1])
|
| 53 |
-
return max_label, max_score, labels
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
#LOGGING ALL DATA TO CSV FILE
|
| 57 |
-
import os
|
| 58 |
-
LOG_FILE = os.path.join(os.path.dirname(__file__), "phishing_log.csv")
|
| 59 |
-
def log_to_csv(url, rule_score, bert_label, bert_score, final_decision):
|
| 60 |
-
try:
|
| 61 |
-
file_exists = os.path.isfile(LOG_FILE)
|
| 62 |
-
with open(LOG_FILE, "a", newline='') as f:
|
| 63 |
-
writer = csv.writer(f)
|
| 64 |
-
if not file_exists:
|
| 65 |
-
writer.writerow(["Input", "Rule Score", "BERT Label", "Confidence", "Final Decision"])
|
| 66 |
-
writer.writerow([url, rule_score, bert_label, f"{bert_score:.2f}", final_decision])
|
| 67 |
-
except Exception as e:
|
| 68 |
-
print(f"Error writing to CSV: {e}")
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
#Combining URL and email checking logic
|
| 72 |
-
def combined_phishing_detector(url, input_type, log=True):
|
| 73 |
-
if input_type == "URL":
|
| 74 |
-
rule_score = is_phishing_url(url)
|
| 75 |
-
rule_result = "Phishing" if rule_score >= 3 else "Safe"
|
| 76 |
-
|
| 77 |
-
bert_result = url_classifier(url)[0]
|
| 78 |
-
label_map = {"LABEL_0": "safe", "LABEL_1": "phishing"}
|
| 79 |
-
bert_label = label_map.get(bert_result["label"].upper(), "unknown")
|
| 80 |
-
bert_score = bert_result["score"]
|
| 81 |
-
|
| 82 |
-
final_decision = "Phishing" if rule_result == "Phishing" and bert_label == "phishing" and bert_score > 0.75 else "Safe"
|
| 83 |
-
|
| 84 |
-
elif input_type == "Email/Message":
|
| 85 |
-
bert_label, bert_score, bert_probs = predict_email(url)
|
| 86 |
-
rule_score = "N/A"
|
| 87 |
-
rule_result = "Not Applicable"
|
| 88 |
-
final_decision = "Phishing" if bert_label.startswith("phishing") and bert_score > 0.7 else "Safe"
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
if log:
|
| 92 |
-
log_to_csv(url, rule_score, bert_label, bert_score, final_decision)
|
| 93 |
-
|
| 94 |
-
return url, rule_score, bert_label, bert_score, final_decision
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
def run_detector(text, input_type):
|
| 99 |
-
url,rule_score, bert_label, bert_score,final_decision = combined_phishing_detector(text, input_type,log=True)
|
| 100 |
-
|
| 101 |
-
# Add emoji based on result
|
| 102 |
-
if final_decision.lower() == "phishing":
|
| 103 |
-
emoji = "π¨" # warning
|
| 104 |
-
elif final_decision.lower() == "safe":
|
| 105 |
-
emoji = "β
" # check mark
|
| 106 |
-
else:
|
| 107 |
-
emoji = "β"
|
| 108 |
-
|
| 109 |
-
message = (
|
| 110 |
-
f"{emoji} Result: {final_decision}\n"
|
| 111 |
-
f"π Rule Score: {rule_score}\n"
|
| 112 |
-
f"π€ BERT Label: {bert_label}\n"
|
| 113 |
-
f"π Confidence: {bert_score:.2f}"
|
| 114 |
-
)
|
| 115 |
-
return message,LOG_FILE
|
| 116 |
-
|
| 117 |
-
#---GUI-----
|
| 118 |
-
gr.HTML("""
|
| 119 |
-
<link href="https://fonts.googleapis.com/css2?family=Poppins:wght@400;500;600;700&display=swap" rel="stylesheet">
|
| 120 |
-
<h1 style='text-align:center; color:white; font-family: "Poppins", sans-serif;'>π Phishing URL & Email Detector (BERT + Rules) π</h1>
|
| 121 |
-
""")
|
| 122 |
-
|
| 123 |
-
with gr.Blocks(css="""
|
| 124 |
-
.gradio-container {
|
| 125 |
-
background-image: url('https://c8.alamy.com/comp/M79X4X/cyber-security-buzzwords-phishing-alert-with-blue-numbers-in-background-M79X4X.jpg');
|
| 126 |
-
background-size: cover;
|
| 127 |
-
background-position: center;
|
| 128 |
-
background-repeat: no-repeat;
|
| 129 |
-
font-family: 'Poppins', sans-serif;
|
| 130 |
-
color: white;
|
| 131 |
-
}
|
| 132 |
-
input, textarea, button, label, .gr-box, .gr-button, .gr-textbox, .gr-radio, .gr-file {
|
| 133 |
-
font-family: 'Poppins', sans-serif !important;
|
| 134 |
-
color: white;
|
| 135 |
-
}
|
| 136 |
-
""") as demo:
|
| 137 |
-
|
| 138 |
-
gr.HTML("<h1 style='text-align:center; color:white;'>π Phishing URL & Email Detector (BERT + Rules) π</h1>")
|
| 139 |
-
|
| 140 |
-
with gr.Row():
|
| 141 |
-
input_text = gr.Textbox(label="Enter URL or Email", lines=5)
|
| 142 |
-
input_type = gr.Radio(["URL", "Email/Message"], label="Input Type")
|
| 143 |
-
|
| 144 |
-
result_output = gr.Textbox(label="Detection Result", lines=4, interactive=False)
|
| 145 |
-
log_file_output = gr.File(label="Download Log File")
|
| 146 |
-
|
| 147 |
-
detect_button = gr.Button("Detect")
|
| 148 |
-
|
| 149 |
-
detect_button.click(fn=run_detector, inputs=[input_text, input_type], outputs=[result_output, log_file_output])
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
demo.launch(share=True)
|
| 153 |
-
|
| 154 |
-
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import re
|
| 3 |
+
from urllib.parse import urlparse
|
| 4 |
+
import csv
|
| 5 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
| 6 |
+
import torch
|
| 7 |
+
#URL model
|
| 8 |
+
url_tokenizer = AutoTokenizer.from_pretrained("najla45/phishing_detection_fine_tuned_bert")
|
| 9 |
+
url_model = AutoModelForSequenceClassification.from_pretrained("najla45/phishing_detection_fine_tuned_bert")
|
| 10 |
+
url_classifier = pipeline("text-classification", model=url_model, tokenizer=url_tokenizer)
|
| 11 |
+
|
| 12 |
+
#email model
|
| 13 |
+
email_tokenizer = AutoTokenizer.from_pretrained("cybersectony/phishing-email-detection-distilbert_v2.4.1")
|
| 14 |
+
email_model = AutoModelForSequenceClassification.from_pretrained("cybersectony/phishing-email-detection-distilbert_v2.4.1")
|
| 15 |
+
|
| 16 |
+
#logic for checking the state of url
|
| 17 |
+
def is_phishing_url(url):
|
| 18 |
+
suspicious_keywords = ['secure', 'account', 'update', 'free', 'login', 'verify', 'banking']
|
| 19 |
+
domain = urlparse(url).netloc
|
| 20 |
+
path = urlparse(url).path
|
| 21 |
+
|
| 22 |
+
score = 0
|
| 23 |
+
if re.match(r'https?://\d{1,3}(\.\d{1,3}){3}', url):
|
| 24 |
+
score += 2
|
| 25 |
+
if '-' in domain:
|
| 26 |
+
score += 1
|
| 27 |
+
if not url.startswith("https://"):
|
| 28 |
+
score += 3
|
| 29 |
+
if any(keyword in url.lower() for keyword in suspicious_keywords):
|
| 30 |
+
score += 2
|
| 31 |
+
if len(url) > 75:
|
| 32 |
+
score += 1
|
| 33 |
+
if '@' in url:
|
| 34 |
+
score += 2
|
| 35 |
+
|
| 36 |
+
return score
|
| 37 |
+
|
| 38 |
+
#logic checking for phishing email
|
| 39 |
+
def predict_email(email_text):
|
| 40 |
+
inputs = email_tokenizer(email_text, return_tensors="pt", truncation=True, max_length=512)
|
| 41 |
+
with torch.no_grad():
|
| 42 |
+
outputs = email_model(**inputs)
|
| 43 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)[0].tolist()
|
| 44 |
+
|
| 45 |
+
labels = {
|
| 46 |
+
"legitimate_email": probs[0],
|
| 47 |
+
"phishing_url": probs[1],
|
| 48 |
+
"legitimate_url": probs[2],
|
| 49 |
+
"phishing_url_alt": probs[3]
|
| 50 |
+
}
|
| 51 |
+
|
| 52 |
+
max_label, max_score = max(labels.items(), key=lambda x: x[1])
|
| 53 |
+
return max_label, max_score, labels
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
#LOGGING ALL DATA TO CSV FILE
|
| 57 |
+
import os
|
| 58 |
+
LOG_FILE = os.path.join(os.path.dirname(__file__), "phishing_log.csv")
|
| 59 |
+
def log_to_csv(url, rule_score, bert_label, bert_score, final_decision):
|
| 60 |
+
try:
|
| 61 |
+
file_exists = os.path.isfile(LOG_FILE)
|
| 62 |
+
with open(LOG_FILE, "a", newline='') as f:
|
| 63 |
+
writer = csv.writer(f)
|
| 64 |
+
if not file_exists:
|
| 65 |
+
writer.writerow(["Input", "Rule Score", "BERT Label", "Confidence", "Final Decision"])
|
| 66 |
+
writer.writerow([url, rule_score, bert_label, f"{bert_score:.2f}", final_decision])
|
| 67 |
+
except Exception as e:
|
| 68 |
+
print(f"Error writing to CSV: {e}")
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
#Combining URL and email checking logic
|
| 72 |
+
def combined_phishing_detector(url, input_type, log=True):
|
| 73 |
+
if input_type == "URL":
|
| 74 |
+
rule_score = is_phishing_url(url)
|
| 75 |
+
rule_result = "Phishing" if rule_score >= 3 else "Safe"
|
| 76 |
+
|
| 77 |
+
bert_result = url_classifier(url)[0]
|
| 78 |
+
label_map = {"LABEL_0": "safe", "LABEL_1": "phishing"}
|
| 79 |
+
bert_label = label_map.get(bert_result["label"].upper(), "unknown")
|
| 80 |
+
bert_score = bert_result["score"]
|
| 81 |
+
|
| 82 |
+
final_decision = "Phishing" if rule_result == "Phishing" and bert_label == "phishing" and bert_score > 0.75 else "Safe"
|
| 83 |
+
|
| 84 |
+
elif input_type == "Email/Message":
|
| 85 |
+
bert_label, bert_score, bert_probs = predict_email(url)
|
| 86 |
+
rule_score = "N/A"
|
| 87 |
+
rule_result = "Not Applicable"
|
| 88 |
+
final_decision = "Phishing" if bert_label.startswith("phishing") and bert_score > 0.7 else "Safe"
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
if log:
|
| 92 |
+
log_to_csv(url, rule_score, bert_label, bert_score, final_decision)
|
| 93 |
+
|
| 94 |
+
return url, rule_score, bert_label, bert_score, final_decision
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def run_detector(text, input_type):
|
| 99 |
+
url,rule_score, bert_label, bert_score,final_decision = combined_phishing_detector(text, input_type,log=True)
|
| 100 |
+
|
| 101 |
+
# Add emoji based on result
|
| 102 |
+
if final_decision.lower() == "phishing":
|
| 103 |
+
emoji = "π¨" # warning
|
| 104 |
+
elif final_decision.lower() == "safe":
|
| 105 |
+
emoji = "β
" # check mark
|
| 106 |
+
else:
|
| 107 |
+
emoji = "β"
|
| 108 |
+
|
| 109 |
+
message = (
|
| 110 |
+
f"{emoji} Result: {final_decision}\n"
|
| 111 |
+
f"π Rule Score: {rule_score}\n"
|
| 112 |
+
f"π€ BERT Label: {bert_label}\n"
|
| 113 |
+
f"π Confidence: {bert_score:.2f}"
|
| 114 |
+
)
|
| 115 |
+
return message,LOG_FILE
|
| 116 |
+
|
| 117 |
+
#---GUI-----
|
| 118 |
+
gr.HTML("""
|
| 119 |
+
<link href="https://fonts.googleapis.com/css2?family=Poppins:wght@400;500;600;700&display=swap" rel="stylesheet">
|
| 120 |
+
<h1 style='text-align:center; color:white; font-family: "Poppins", sans-serif;'>π Phishing URL & Email Detector (BERT + Rules) π</h1>
|
| 121 |
+
""")
|
| 122 |
+
|
| 123 |
+
with gr.Blocks(css="""
|
| 124 |
+
.gradio-container {
|
| 125 |
+
background-image: url('https://c8.alamy.com/comp/M79X4X/cyber-security-buzzwords-phishing-alert-with-blue-numbers-in-background-M79X4X.jpg');
|
| 126 |
+
background-size: cover;
|
| 127 |
+
background-position: center;
|
| 128 |
+
background-repeat: no-repeat;
|
| 129 |
+
font-family: 'Poppins', sans-serif;
|
| 130 |
+
color: white;
|
| 131 |
+
}
|
| 132 |
+
input, textarea, button, label, .gr-box, .gr-button, .gr-textbox, .gr-radio, .gr-file {
|
| 133 |
+
font-family: 'Poppins', sans-serif !important;
|
| 134 |
+
color: white;
|
| 135 |
+
}
|
| 136 |
+
""") as demo:
|
| 137 |
+
|
| 138 |
+
gr.HTML("<h1 style='text-align:center; color:white;'>π Phishing URL & Email Detector (BERT + Rules) π</h1>")
|
| 139 |
+
|
| 140 |
+
with gr.Row():
|
| 141 |
+
input_text = gr.Textbox(label="Enter URL or Email", lines=5)
|
| 142 |
+
input_type = gr.Radio(["URL", "Email/Message"], label="Input Type")
|
| 143 |
+
|
| 144 |
+
result_output = gr.Textbox(label="Detection Result", lines=4, interactive=False)
|
| 145 |
+
log_file_output = gr.File(label="Download Log File")
|
| 146 |
+
|
| 147 |
+
detect_button = gr.Button("Detect")
|
| 148 |
+
|
| 149 |
+
detect_button.click(fn=run_detector, inputs=[input_text, input_type], outputs=[result_output, log_file_output])
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
demo.launch(share=True)
|
| 153 |
+
|
| 154 |
+
|