Spaces:
Runtime error
Runtime error
Delete models/dit.py
Browse files- models/dit.py +0 -617
models/dit.py
DELETED
|
@@ -1,617 +0,0 @@
|
|
| 1 |
-
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
-
# All rights reserved.
|
| 3 |
-
|
| 4 |
-
# This source code is licensed under the license found in the
|
| 5 |
-
# LICENSE file in the root directory of this source tree.
|
| 6 |
-
# --------------------------------------------------------
|
| 7 |
-
# References:
|
| 8 |
-
# GLIDE: https://github.com/openai/glide-text2im
|
| 9 |
-
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py
|
| 10 |
-
# --------------------------------------------------------
|
| 11 |
-
import math
|
| 12 |
-
import torch
|
| 13 |
-
import torch.nn as nn
|
| 14 |
-
import numpy as np
|
| 15 |
-
|
| 16 |
-
from einops import rearrange, repeat
|
| 17 |
-
from timm.models.vision_transformer import Mlp, PatchEmbed
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
import os
|
| 22 |
-
import sys
|
| 23 |
-
# sys.path.append(os.getcwd())
|
| 24 |
-
sys.path.append(os.path.split(sys.path[0])[0])
|
| 25 |
-
# 代码解释
|
| 26 |
-
# sys.path[0] : 得到C:\Users\maxu\Desktop\blog_test\pakage2
|
| 27 |
-
# os.path.split(sys.path[0]) : 得到['C:\Users\maxu\Desktop\blog_test',pakage2']
|
| 28 |
-
# mmcls 里面跨包引用是因为安装了mmcls
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
# for i in sys.path:
|
| 32 |
-
# print(i)
|
| 33 |
-
|
| 34 |
-
# the xformers lib allows less memory, faster training and inference
|
| 35 |
-
try:
|
| 36 |
-
import xformers
|
| 37 |
-
import xformers.ops
|
| 38 |
-
except:
|
| 39 |
-
XFORMERS_IS_AVAILBLE = False
|
| 40 |
-
|
| 41 |
-
# from timm.models.layers.helpers import to_2tuple
|
| 42 |
-
# from timm.models.layers.trace_utils import _assert
|
| 43 |
-
|
| 44 |
-
def modulate(x, shift, scale):
|
| 45 |
-
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
|
| 46 |
-
|
| 47 |
-
#################################################################################
|
| 48 |
-
# Attention Layers from TIMM #
|
| 49 |
-
#################################################################################
|
| 50 |
-
|
| 51 |
-
class Attention(nn.Module):
|
| 52 |
-
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., use_lora=False, attention_mode='math'):
|
| 53 |
-
super().__init__()
|
| 54 |
-
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
|
| 55 |
-
self.num_heads = num_heads
|
| 56 |
-
head_dim = dim // num_heads
|
| 57 |
-
self.scale = head_dim ** -0.5
|
| 58 |
-
self.attention_mode = attention_mode
|
| 59 |
-
self.use_lora = use_lora
|
| 60 |
-
|
| 61 |
-
if self.use_lora:
|
| 62 |
-
self.qkv = lora.MergedLinear(dim, dim * 3, r=500, enable_lora=[True, False, True])
|
| 63 |
-
else:
|
| 64 |
-
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
| 65 |
-
|
| 66 |
-
self.attn_drop = nn.Dropout(attn_drop)
|
| 67 |
-
self.proj = nn.Linear(dim, dim)
|
| 68 |
-
self.proj_drop = nn.Dropout(proj_drop)
|
| 69 |
-
|
| 70 |
-
def forward(self, x):
|
| 71 |
-
B, N, C = x.shape
|
| 72 |
-
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4).contiguous()
|
| 73 |
-
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
| 74 |
-
|
| 75 |
-
if self.attention_mode == 'xformers': # cause loss nan while using with amp
|
| 76 |
-
x = xformers.ops.memory_efficient_attention(q, k, v).reshape(B, N, C)
|
| 77 |
-
|
| 78 |
-
elif self.attention_mode == 'flash':
|
| 79 |
-
# cause loss nan while using with amp
|
| 80 |
-
# Optionally use the context manager to ensure one of the fused kerenels is run
|
| 81 |
-
with torch.backends.cuda.sdp_kernel(enable_math=False):
|
| 82 |
-
x = torch.nn.functional.scaled_dot_product_attention(q, k, v).reshape(B, N, C) # require pytorch 2.0
|
| 83 |
-
|
| 84 |
-
elif self.attention_mode == 'math':
|
| 85 |
-
attn = (q @ k.transpose(-2, -1)) * self.scale
|
| 86 |
-
attn = attn.softmax(dim=-1)
|
| 87 |
-
attn = self.attn_drop(attn)
|
| 88 |
-
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
| 89 |
-
|
| 90 |
-
else:
|
| 91 |
-
raise NotImplemented
|
| 92 |
-
|
| 93 |
-
x = self.proj(x)
|
| 94 |
-
x = self.proj_drop(x)
|
| 95 |
-
return x
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
#################################################################################
|
| 99 |
-
# Embedding Layers for Timesteps and Class Labels #
|
| 100 |
-
#################################################################################
|
| 101 |
-
|
| 102 |
-
class TimestepEmbedder(nn.Module):
|
| 103 |
-
"""
|
| 104 |
-
Embeds scalar timesteps into vector representations.
|
| 105 |
-
"""
|
| 106 |
-
def __init__(self, hidden_size, frequency_embedding_size=256):
|
| 107 |
-
super().__init__()
|
| 108 |
-
self.mlp = nn.Sequential(
|
| 109 |
-
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
|
| 110 |
-
nn.SiLU(),
|
| 111 |
-
nn.Linear(hidden_size, hidden_size, bias=True),
|
| 112 |
-
)
|
| 113 |
-
self.frequency_embedding_size = frequency_embedding_size
|
| 114 |
-
|
| 115 |
-
@staticmethod
|
| 116 |
-
def timestep_embedding(t, dim, max_period=10000):
|
| 117 |
-
"""
|
| 118 |
-
Create sinusoidal timestep embeddings.
|
| 119 |
-
:param t: a 1-D Tensor of N indices, one per batch element.
|
| 120 |
-
These may be fractional.
|
| 121 |
-
:param dim: the dimension of the output.
|
| 122 |
-
:param max_period: controls the minimum frequency of the embeddings.
|
| 123 |
-
:return: an (N, D) Tensor of positional embeddings.
|
| 124 |
-
"""
|
| 125 |
-
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
|
| 126 |
-
half = dim // 2
|
| 127 |
-
freqs = torch.exp(
|
| 128 |
-
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
| 129 |
-
).to(device=t.device)
|
| 130 |
-
args = t[:, None].float() * freqs[None]
|
| 131 |
-
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
| 132 |
-
if dim % 2:
|
| 133 |
-
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
| 134 |
-
return embedding
|
| 135 |
-
|
| 136 |
-
def forward(self, t):
|
| 137 |
-
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
|
| 138 |
-
t_emb = self.mlp(t_freq)
|
| 139 |
-
return t_emb
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
class LabelEmbedder(nn.Module):
|
| 143 |
-
"""
|
| 144 |
-
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
|
| 145 |
-
"""
|
| 146 |
-
def __init__(self, num_classes, hidden_size, dropout_prob):
|
| 147 |
-
super().__init__()
|
| 148 |
-
use_cfg_embedding = dropout_prob > 0
|
| 149 |
-
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
|
| 150 |
-
self.num_classes = num_classes
|
| 151 |
-
self.dropout_prob = dropout_prob
|
| 152 |
-
|
| 153 |
-
def token_drop(self, labels, force_drop_ids=None):
|
| 154 |
-
"""
|
| 155 |
-
Drops labels to enable classifier-free guidance.
|
| 156 |
-
"""
|
| 157 |
-
if force_drop_ids is None:
|
| 158 |
-
drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
|
| 159 |
-
print(drop_ids)
|
| 160 |
-
else:
|
| 161 |
-
drop_ids = force_drop_ids == 1
|
| 162 |
-
labels = torch.where(drop_ids, self.num_classes, labels)
|
| 163 |
-
print('******labels******', labels)
|
| 164 |
-
return labels
|
| 165 |
-
|
| 166 |
-
def forward(self, labels, train, force_drop_ids=None):
|
| 167 |
-
use_dropout = self.dropout_prob > 0
|
| 168 |
-
if (train and use_dropout) or (force_drop_ids is not None):
|
| 169 |
-
labels = self.token_drop(labels, force_drop_ids)
|
| 170 |
-
embeddings = self.embedding_table(labels)
|
| 171 |
-
return embeddings
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
#################################################################################
|
| 175 |
-
# Core DiT Model #
|
| 176 |
-
#################################################################################
|
| 177 |
-
|
| 178 |
-
class DiTBlock(nn.Module):
|
| 179 |
-
"""
|
| 180 |
-
A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning.
|
| 181 |
-
"""
|
| 182 |
-
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, **block_kwargs):
|
| 183 |
-
super().__init__()
|
| 184 |
-
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
| 185 |
-
self.attn = Attention(hidden_size, num_heads=num_heads, qkv_bias=True, **block_kwargs)
|
| 186 |
-
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
| 187 |
-
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
| 188 |
-
approx_gelu = lambda: nn.GELU(approximate="tanh")
|
| 189 |
-
self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0)
|
| 190 |
-
self.adaLN_modulation = nn.Sequential(
|
| 191 |
-
nn.SiLU(),
|
| 192 |
-
nn.Linear(hidden_size, 6 * hidden_size, bias=True)
|
| 193 |
-
)
|
| 194 |
-
|
| 195 |
-
def forward(self, x, c):
|
| 196 |
-
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(6, dim=1)
|
| 197 |
-
x = x + gate_msa.unsqueeze(1) * self.attn(modulate(self.norm1(x), shift_msa, scale_msa))
|
| 198 |
-
x = x + gate_mlp.unsqueeze(1) * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp))
|
| 199 |
-
return x
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
class FinalLayer(nn.Module):
|
| 203 |
-
"""
|
| 204 |
-
The final layer of DiT.
|
| 205 |
-
"""
|
| 206 |
-
def __init__(self, hidden_size, patch_size, out_channels):
|
| 207 |
-
super().__init__()
|
| 208 |
-
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
| 209 |
-
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
|
| 210 |
-
self.adaLN_modulation = nn.Sequential(
|
| 211 |
-
nn.SiLU(),
|
| 212 |
-
nn.Linear(hidden_size, 2 * hidden_size, bias=True)
|
| 213 |
-
)
|
| 214 |
-
|
| 215 |
-
def forward(self, x, c):
|
| 216 |
-
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
|
| 217 |
-
x = modulate(self.norm_final(x), shift, scale)
|
| 218 |
-
x = self.linear(x)
|
| 219 |
-
return x
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
class DiT(nn.Module):
|
| 223 |
-
"""
|
| 224 |
-
Diffusion model with a Transformer backbone.
|
| 225 |
-
"""
|
| 226 |
-
def __init__(
|
| 227 |
-
self,
|
| 228 |
-
input_size=32,
|
| 229 |
-
patch_size=2,
|
| 230 |
-
in_channels=4,
|
| 231 |
-
hidden_size=1152,
|
| 232 |
-
depth=28,
|
| 233 |
-
num_heads=16,
|
| 234 |
-
mlp_ratio=4.0,
|
| 235 |
-
num_frames=16,
|
| 236 |
-
class_dropout_prob=0.1,
|
| 237 |
-
num_classes=1000,
|
| 238 |
-
learn_sigma=True,
|
| 239 |
-
class_guided=False,
|
| 240 |
-
use_lora=False,
|
| 241 |
-
attention_mode='math',
|
| 242 |
-
):
|
| 243 |
-
super().__init__()
|
| 244 |
-
self.learn_sigma = learn_sigma
|
| 245 |
-
self.in_channels = in_channels
|
| 246 |
-
self.out_channels = in_channels * 2 if learn_sigma else in_channels
|
| 247 |
-
self.patch_size = patch_size
|
| 248 |
-
self.num_heads = num_heads
|
| 249 |
-
self.class_guided = class_guided
|
| 250 |
-
self.num_frames = num_frames
|
| 251 |
-
|
| 252 |
-
self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size, bias=True)
|
| 253 |
-
self.t_embedder = TimestepEmbedder(hidden_size)
|
| 254 |
-
|
| 255 |
-
if self.class_guided:
|
| 256 |
-
self.y_embedder = LabelEmbedder(num_classes, hidden_size, class_dropout_prob)
|
| 257 |
-
|
| 258 |
-
num_patches = self.x_embedder.num_patches
|
| 259 |
-
# Will use fixed sin-cos embedding:
|
| 260 |
-
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, hidden_size), requires_grad=False)
|
| 261 |
-
self.time_embed = nn.Parameter(torch.zeros(1, num_frames, hidden_size), requires_grad=False)
|
| 262 |
-
|
| 263 |
-
if use_lora:
|
| 264 |
-
self.blocks = nn.ModuleList([
|
| 265 |
-
DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, attention_mode=attention_mode, use_lora=False if num % 2 ==0 else True) for num in range(depth)
|
| 266 |
-
])
|
| 267 |
-
else:
|
| 268 |
-
self.blocks = nn.ModuleList([
|
| 269 |
-
DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, attention_mode=attention_mode) for _ in range(depth)
|
| 270 |
-
])
|
| 271 |
-
|
| 272 |
-
self.final_layer = FinalLayer(hidden_size, patch_size, self.out_channels)
|
| 273 |
-
self.initialize_weights()
|
| 274 |
-
|
| 275 |
-
def initialize_weights(self):
|
| 276 |
-
# Initialize transformer layers:
|
| 277 |
-
def _basic_init(module):
|
| 278 |
-
if isinstance(module, nn.Linear):
|
| 279 |
-
torch.nn.init.xavier_uniform_(module.weight)
|
| 280 |
-
if module.bias is not None:
|
| 281 |
-
nn.init.constant_(module.bias, 0)
|
| 282 |
-
self.apply(_basic_init)
|
| 283 |
-
|
| 284 |
-
# Initialize (and freeze) pos_embed by sin-cos embedding:
|
| 285 |
-
pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.x_embedder.num_patches ** 0.5))
|
| 286 |
-
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
|
| 287 |
-
|
| 288 |
-
time_embed = get_1d_sincos_time_embed(self.time_embed.shape[-1], self.time_embed.shape[-2])
|
| 289 |
-
self.time_embed.data.copy_(torch.from_numpy(time_embed).float().unsqueeze(0))
|
| 290 |
-
|
| 291 |
-
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
|
| 292 |
-
w = self.x_embedder.proj.weight.data
|
| 293 |
-
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
|
| 294 |
-
nn.init.constant_(self.x_embedder.proj.bias, 0)
|
| 295 |
-
|
| 296 |
-
if self.class_guided:
|
| 297 |
-
# Initialize label embedding table:
|
| 298 |
-
nn.init.normal_(self.y_embedder.embedding_table.weight, std=0.02)
|
| 299 |
-
|
| 300 |
-
# Initialize timestep embedding MLP:
|
| 301 |
-
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
|
| 302 |
-
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
|
| 303 |
-
|
| 304 |
-
# Zero-out adaLN modulation layers in DiT blocks:
|
| 305 |
-
for block in self.blocks:
|
| 306 |
-
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
|
| 307 |
-
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
|
| 308 |
-
|
| 309 |
-
# Zero-out output layers:
|
| 310 |
-
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
|
| 311 |
-
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
|
| 312 |
-
nn.init.constant_(self.final_layer.linear.weight, 0)
|
| 313 |
-
nn.init.constant_(self.final_layer.linear.bias, 0)
|
| 314 |
-
|
| 315 |
-
def unpatchify(self, x):
|
| 316 |
-
"""
|
| 317 |
-
x: (N, T, patch_size**2 * C)
|
| 318 |
-
imgs: (N, H, W, C)
|
| 319 |
-
"""
|
| 320 |
-
c = self.out_channels
|
| 321 |
-
p = self.x_embedder.patch_size[0]
|
| 322 |
-
h = w = int(x.shape[1] ** 0.5)
|
| 323 |
-
assert h * w == x.shape[1]
|
| 324 |
-
|
| 325 |
-
x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
|
| 326 |
-
x = torch.einsum('nhwpqc->nchpwq', x)
|
| 327 |
-
imgs = x.reshape(shape=(x.shape[0], c, h * p, h * p))
|
| 328 |
-
return imgs
|
| 329 |
-
|
| 330 |
-
# @torch.cuda.amp.autocast()
|
| 331 |
-
# @torch.compile
|
| 332 |
-
def forward(self, x, t, y=None):
|
| 333 |
-
"""
|
| 334 |
-
Forward pass of DiT.
|
| 335 |
-
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
|
| 336 |
-
t: (N,) tensor of diffusion timesteps
|
| 337 |
-
y: (N,) tensor of class labels
|
| 338 |
-
"""
|
| 339 |
-
# print('label: {}'.format(y))
|
| 340 |
-
batches, frames, channels, high, weight = x.shape # for example, 3, 16, 3, 32, 32
|
| 341 |
-
# 这里rearrange后每隔f是同一个视频
|
| 342 |
-
x = rearrange(x, 'b f c h w -> (b f) c h w')
|
| 343 |
-
x = self.x_embedder(x) + self.pos_embed # (N, T, D), where T = H * W / patch_size ** 2
|
| 344 |
-
t = self.t_embedder(t) # (N, D)
|
| 345 |
-
# timestep_spatial的repeat需要保证每f帧为同一个timesteps
|
| 346 |
-
timestep_spatial = repeat(t, 'n d -> (n c) d', c=self.time_embed.shape[1]) # 48, 1152; c=num_frames
|
| 347 |
-
timestep_time = repeat(t, 'n d -> (n c) d', c=self.pos_embed.shape[1]) # 768, 1152; c=num tokens
|
| 348 |
-
|
| 349 |
-
if self.class_guided:
|
| 350 |
-
y = self.y_embedder(y, self.training)
|
| 351 |
-
y_spatial = repeat(y, 'n d -> (n c) d', c=self.time_embed.shape[1]) # 48, 1152; c=num_frames
|
| 352 |
-
y_time = repeat(y, 'n d -> (n c) d', c=self.pos_embed.shape[1]) # 768, 1152; c=num tokens
|
| 353 |
-
|
| 354 |
-
# if self.class_guided:
|
| 355 |
-
# y = self.y_embedder(y, self.training) # (N, D)
|
| 356 |
-
# c = timestep_spatial + y
|
| 357 |
-
# else:
|
| 358 |
-
# c = timestep_spatial
|
| 359 |
-
|
| 360 |
-
# for block in self.blocks:
|
| 361 |
-
# x = block(x, c) # (N, T, D)
|
| 362 |
-
|
| 363 |
-
for i in range(0, len(self.blocks), 2):
|
| 364 |
-
# print('The {}-th run'.format(i))
|
| 365 |
-
spatial_block, time_block = self.blocks[i:i+2]
|
| 366 |
-
# print(spatial_block)
|
| 367 |
-
# print(time_block)
|
| 368 |
-
# print(x.shape)
|
| 369 |
-
|
| 370 |
-
if self.class_guided:
|
| 371 |
-
c = timestep_spatial + y_spatial
|
| 372 |
-
else:
|
| 373 |
-
c = timestep_spatial
|
| 374 |
-
x = spatial_block(x, c)
|
| 375 |
-
# print(c.shape)
|
| 376 |
-
|
| 377 |
-
x = rearrange(x, '(b f) t d -> (b t) f d', b=batches) # t 代表单帧token数; 768, 16, 1152
|
| 378 |
-
# Add Time Embedding
|
| 379 |
-
if i == 0:
|
| 380 |
-
x = x + self.time_embed # 768, 16, 1152
|
| 381 |
-
|
| 382 |
-
if self.class_guided:
|
| 383 |
-
c = timestep_time + y_time
|
| 384 |
-
else:
|
| 385 |
-
# timestep_time = repeat(t, 'n d -> (n c) d', c=x.shape[0] // batches) # 768, 1152
|
| 386 |
-
# print(timestep_time.shape)
|
| 387 |
-
c = timestep_time
|
| 388 |
-
|
| 389 |
-
x = time_block(x, c)
|
| 390 |
-
# print(x.shape)
|
| 391 |
-
x = rearrange(x, '(b t) f d -> (b f) t d', b=batches)
|
| 392 |
-
|
| 393 |
-
# x = rearrange(x, '(b t) f d -> (b f) t d', b=batches)
|
| 394 |
-
if self.class_guided:
|
| 395 |
-
c = timestep_spatial + y_spatial
|
| 396 |
-
else:
|
| 397 |
-
c = timestep_spatial
|
| 398 |
-
x = self.final_layer(x, c) # (N, T, patch_size ** 2 * out_channels)
|
| 399 |
-
x = self.unpatchify(x) # (N, out_channels, H, W)
|
| 400 |
-
x = rearrange(x, '(b f) c h w -> b f c h w', b=batches)
|
| 401 |
-
# print(x.shape)
|
| 402 |
-
return x
|
| 403 |
-
|
| 404 |
-
def forward_motion(self, motions, t, base_frame, y=None):
|
| 405 |
-
"""
|
| 406 |
-
Forward pass of DiT.
|
| 407 |
-
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
|
| 408 |
-
t: (N,) tensor of diffusion timesteps
|
| 409 |
-
y: (N,) tensor of class labels
|
| 410 |
-
"""
|
| 411 |
-
# print('label: {}'.format(y))
|
| 412 |
-
batches, frames, channels, high, weight = motions.shape # for example, 3, 16, 3, 32, 32
|
| 413 |
-
# 这里rearrange后每隔f是同一个视频
|
| 414 |
-
motions = rearrange(motions, 'b f c h w -> (b f) c h w')
|
| 415 |
-
motions = self.x_embedder(motions) + self.pos_embed # (N, T, D), where T = H * W / patch_size ** 2
|
| 416 |
-
t = self.t_embedder(t) # (N, D)
|
| 417 |
-
# timestep_spatial的repeat需要保证每f帧为同一个timesteps
|
| 418 |
-
timestep_spatial = repeat(t, 'n d -> (n c) d', c=self.time_embed.shape[1]) # 48, 1152; c=num_frames
|
| 419 |
-
timestep_time = repeat(t, 'n d -> (n c) d', c=self.pos_embed.shape[1]) # 768, 1152; c=num tokens
|
| 420 |
-
|
| 421 |
-
if self.class_guided:
|
| 422 |
-
y = self.y_embedder(y, self.training)
|
| 423 |
-
y_spatial = repeat(y, 'n d -> (n c) d', c=self.time_embed.shape[1]) # 48, 1152; c=num_frames
|
| 424 |
-
y_time = repeat(y, 'n d -> (n c) d', c=self.pos_embed.shape[1]) # 768, 1152; c=num tokens
|
| 425 |
-
|
| 426 |
-
# if self.class_guided:
|
| 427 |
-
# y = self.y_embedder(y, self.training) # (N, D)
|
| 428 |
-
# c = timestep_spatial + y
|
| 429 |
-
# else:
|
| 430 |
-
# c = timestep_spatial
|
| 431 |
-
|
| 432 |
-
# for block in self.blocks:
|
| 433 |
-
# x = block(x, c) # (N, T, D)
|
| 434 |
-
|
| 435 |
-
for i in range(0, len(self.blocks), 2):
|
| 436 |
-
# print('The {}-th run'.format(i))
|
| 437 |
-
spatial_block, time_block = self.blocks[i:i+2]
|
| 438 |
-
# print(spatial_block)
|
| 439 |
-
# print(time_block)
|
| 440 |
-
# print(x.shape)
|
| 441 |
-
|
| 442 |
-
if self.class_guided:
|
| 443 |
-
c = timestep_spatial + y_spatial
|
| 444 |
-
else:
|
| 445 |
-
c = timestep_spatial
|
| 446 |
-
x = spatial_block(x, c)
|
| 447 |
-
# print(c.shape)
|
| 448 |
-
|
| 449 |
-
x = rearrange(x, '(b f) t d -> (b t) f d', b=batches) # t 代表单帧token数; 768, 16, 1152
|
| 450 |
-
# Add Time Embedding
|
| 451 |
-
if i == 0:
|
| 452 |
-
x = x + self.time_embed # 768, 16, 1152
|
| 453 |
-
|
| 454 |
-
if self.class_guided:
|
| 455 |
-
c = timestep_time + y_time
|
| 456 |
-
else:
|
| 457 |
-
# timestep_time = repeat(t, 'n d -> (n c) d', c=x.shape[0] // batches) # 768, 1152
|
| 458 |
-
# print(timestep_time.shape)
|
| 459 |
-
c = timestep_time
|
| 460 |
-
|
| 461 |
-
x = time_block(x, c)
|
| 462 |
-
# print(x.shape)
|
| 463 |
-
x = rearrange(x, '(b t) f d -> (b f) t d', b=batches)
|
| 464 |
-
|
| 465 |
-
# x = rearrange(x, '(b t) f d -> (b f) t d', b=batches)
|
| 466 |
-
if self.class_guided:
|
| 467 |
-
c = timestep_spatial + y_spatial
|
| 468 |
-
else:
|
| 469 |
-
c = timestep_spatial
|
| 470 |
-
x = self.final_layer(x, c) # (N, T, patch_size ** 2 * out_channels)
|
| 471 |
-
x = self.unpatchify(x) # (N, out_channels, H, W)
|
| 472 |
-
x = rearrange(x, '(b f) c h w -> b f c h w', b=batches)
|
| 473 |
-
# print(x.shape)
|
| 474 |
-
return x
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
def forward_with_cfg(self, x, t, y, cfg_scale):
|
| 478 |
-
"""
|
| 479 |
-
Forward pass of DiT, but also batches the unconditional forward pass for classifier-free guidance.
|
| 480 |
-
"""
|
| 481 |
-
# https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb
|
| 482 |
-
half = x[: len(x) // 2]
|
| 483 |
-
combined = torch.cat([half, half], dim=0)
|
| 484 |
-
model_out = self.forward(combined, t, y)
|
| 485 |
-
# For exact reproducibility reasons, we apply classifier-free guidance on only
|
| 486 |
-
# three channels by default. The standard approach to cfg applies it to all channels.
|
| 487 |
-
# This can be done by uncommenting the following line and commenting-out the line following that.
|
| 488 |
-
# eps, rest = model_out[:, :self.in_channels], model_out[:, self.in_channels:]
|
| 489 |
-
eps, rest = model_out[:, :3], model_out[:, 3:]
|
| 490 |
-
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
|
| 491 |
-
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
|
| 492 |
-
eps = torch.cat([half_eps, half_eps], dim=0)
|
| 493 |
-
return torch.cat([eps, rest], dim=1)
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
#################################################################################
|
| 497 |
-
# Sine/Cosine Positional Embedding Functions #
|
| 498 |
-
#################################################################################
|
| 499 |
-
# https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py
|
| 500 |
-
|
| 501 |
-
def get_1d_sincos_time_embed(embed_dim, length):
|
| 502 |
-
pos = torch.arange(0, length).unsqueeze(1)
|
| 503 |
-
return get_1d_sincos_pos_embed_from_grid(embed_dim, pos)
|
| 504 |
-
|
| 505 |
-
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0):
|
| 506 |
-
"""
|
| 507 |
-
grid_size: int of the grid height and width
|
| 508 |
-
return:
|
| 509 |
-
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
|
| 510 |
-
"""
|
| 511 |
-
grid_h = np.arange(grid_size, dtype=np.float32)
|
| 512 |
-
grid_w = np.arange(grid_size, dtype=np.float32)
|
| 513 |
-
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
| 514 |
-
grid = np.stack(grid, axis=0)
|
| 515 |
-
|
| 516 |
-
grid = grid.reshape([2, 1, grid_size, grid_size])
|
| 517 |
-
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
| 518 |
-
if cls_token and extra_tokens > 0:
|
| 519 |
-
pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
|
| 520 |
-
return pos_embed
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
| 524 |
-
assert embed_dim % 2 == 0
|
| 525 |
-
|
| 526 |
-
# use half of dimensions to encode grid_h
|
| 527 |
-
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
|
| 528 |
-
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
|
| 529 |
-
|
| 530 |
-
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
| 531 |
-
return emb
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
| 535 |
-
"""
|
| 536 |
-
embed_dim: output dimension for each position
|
| 537 |
-
pos: a list of positions to be encoded: size (M,)
|
| 538 |
-
out: (M, D)
|
| 539 |
-
"""
|
| 540 |
-
assert embed_dim % 2 == 0
|
| 541 |
-
omega = np.arange(embed_dim // 2, dtype=np.float64)
|
| 542 |
-
omega /= embed_dim / 2.
|
| 543 |
-
omega = 1. / 10000**omega # (D/2,)
|
| 544 |
-
|
| 545 |
-
pos = pos.reshape(-1) # (M,)
|
| 546 |
-
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
|
| 547 |
-
|
| 548 |
-
emb_sin = np.sin(out) # (M, D/2)
|
| 549 |
-
emb_cos = np.cos(out) # (M, D/2)
|
| 550 |
-
|
| 551 |
-
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
| 552 |
-
return emb
|
| 553 |
-
|
| 554 |
-
|
| 555 |
-
#################################################################################
|
| 556 |
-
# DiT Configs #
|
| 557 |
-
#################################################################################
|
| 558 |
-
|
| 559 |
-
def DiT_XL_2(**kwargs):
|
| 560 |
-
return DiT(depth=28, hidden_size=1152, patch_size=2, num_heads=16, **kwargs)
|
| 561 |
-
|
| 562 |
-
def DiT_XL_4(**kwargs):
|
| 563 |
-
return DiT(depth=28, hidden_size=1152, patch_size=4, num_heads=16, **kwargs)
|
| 564 |
-
|
| 565 |
-
def DiT_XL_8(**kwargs):
|
| 566 |
-
return DiT(depth=28, hidden_size=1152, patch_size=8, num_heads=16, **kwargs)
|
| 567 |
-
|
| 568 |
-
def DiT_L_2(**kwargs):
|
| 569 |
-
return DiT(depth=24, hidden_size=1024, patch_size=2, num_heads=16, **kwargs)
|
| 570 |
-
|
| 571 |
-
def DiT_L_4(**kwargs):
|
| 572 |
-
return DiT(depth=24, hidden_size=1024, patch_size=4, num_heads=16, **kwargs)
|
| 573 |
-
|
| 574 |
-
def DiT_L_8(**kwargs):
|
| 575 |
-
return DiT(depth=24, hidden_size=1024, patch_size=8, num_heads=16, **kwargs)
|
| 576 |
-
|
| 577 |
-
def DiT_B_2(**kwargs):
|
| 578 |
-
return DiT(depth=12, hidden_size=768, patch_size=2, num_heads=12, **kwargs)
|
| 579 |
-
|
| 580 |
-
def DiT_B_4(**kwargs):
|
| 581 |
-
return DiT(depth=12, hidden_size=768, patch_size=4, num_heads=12, **kwargs)
|
| 582 |
-
|
| 583 |
-
def DiT_B_8(**kwargs):
|
| 584 |
-
return DiT(depth=12, hidden_size=768, patch_size=8, num_heads=12, **kwargs)
|
| 585 |
-
|
| 586 |
-
def DiT_S_2(**kwargs):
|
| 587 |
-
return DiT(depth=12, hidden_size=384, patch_size=2, num_heads=6, **kwargs)
|
| 588 |
-
|
| 589 |
-
def DiT_S_4(**kwargs):
|
| 590 |
-
return DiT(depth=12, hidden_size=384, patch_size=4, num_heads=6, **kwargs)
|
| 591 |
-
|
| 592 |
-
def DiT_S_8(**kwargs):
|
| 593 |
-
return DiT(depth=12, hidden_size=384, patch_size=8, num_heads=6, **kwargs)
|
| 594 |
-
|
| 595 |
-
|
| 596 |
-
DiT_models = {
|
| 597 |
-
'DiT-XL/2': DiT_XL_2, 'DiT-XL/4': DiT_XL_4, 'DiT-XL/8': DiT_XL_8,
|
| 598 |
-
'DiT-L/2': DiT_L_2, 'DiT-L/4': DiT_L_4, 'DiT-L/8': DiT_L_8,
|
| 599 |
-
'DiT-B/2': DiT_B_2, 'DiT-B/4': DiT_B_4, 'DiT-B/8': DiT_B_8,
|
| 600 |
-
'DiT-S/2': DiT_S_2, 'DiT-S/4': DiT_S_4, 'DiT-S/8': DiT_S_8,
|
| 601 |
-
}
|
| 602 |
-
|
| 603 |
-
if __name__ == '__main__':
|
| 604 |
-
|
| 605 |
-
import torch
|
| 606 |
-
|
| 607 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 608 |
-
|
| 609 |
-
img = torch.randn(3, 16, 4, 32, 32).to(device)
|
| 610 |
-
t = torch.tensor([1, 2, 3]).to(device)
|
| 611 |
-
y = torch.tensor([1, 2, 3]).to(device)
|
| 612 |
-
network = DiT_XL_2().to(device)
|
| 613 |
-
y_embeder = LabelEmbedder(num_classes=100, hidden_size=768, dropout_prob=0.5).to(device)
|
| 614 |
-
# lora.mark_only_lora_as_trainable(network)
|
| 615 |
-
out = y_embeder(y, True)
|
| 616 |
-
# out = network(img, t, y)
|
| 617 |
-
print(out.shape)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|