Spaces:
Runtime error
Runtime error
Commit
·
dd310fc
1
Parent(s):
e180512
Update app.py
Browse files
app.py
CHANGED
|
@@ -25,13 +25,9 @@ h1 {
|
|
| 25 |
def infer(prompt, image_inp, seed_inp, ddim_steps,width,height):
|
| 26 |
setup_seed(seed_inp)
|
| 27 |
args.num_sampling_steps = ddim_steps
|
| 28 |
-
###先测试Image的返回类型
|
| 29 |
-
print(prompt, seed_inp, ddim_steps, type(image_inp))
|
| 30 |
img = cv2.imread(image_inp)
|
| 31 |
-
new_size = [height,width]
|
| 32 |
-
|
| 33 |
args.image_size = new_size
|
| 34 |
-
|
| 35 |
vae, model, text_encoder, diffusion = model_i2v_fun(args)
|
| 36 |
vae.to(device)
|
| 37 |
model.to(device)
|
|
@@ -58,17 +54,14 @@ def infer(prompt, image_inp, seed_inp, ddim_steps,width,height):
|
|
| 58 |
video_ = ((video_clip * 0.5 + 0.5) * 255).add_(0.5).clamp_(0, 255).to(dtype=torch.uint8).cpu().permute(0, 2, 3, 1)
|
| 59 |
torchvision.io.write_video(os.path.join(args.save_img_path, prompt+ '.mp4'), video_, fps=8)
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
# video = model_i2V(prompt, image_inp, seed_inp, ddim_steps)
|
| 64 |
|
| 65 |
return os.path.join(args.save_img_path, prompt+ '.mp4')
|
| 66 |
|
| 67 |
|
| 68 |
|
| 69 |
-
def clean():
|
| 70 |
# return gr.Image.update(value=None, visible=False), gr.Video.update(value=None)
|
| 71 |
-
return gr.Video.update(value=None)
|
| 72 |
|
| 73 |
|
| 74 |
title = """
|
|
@@ -118,7 +111,7 @@ with gr.Blocks(css='style.css') as demo:
|
|
| 118 |
|
| 119 |
|
| 120 |
submit_btn = gr.Button("Generate video")
|
| 121 |
-
clean_btn = gr.Button("Clean video")
|
| 122 |
|
| 123 |
video_out = gr.Video(label="Video result", elem_id="video-output", width = 800)
|
| 124 |
inputs = [prompt,image_inp, seed_inp, ddim_steps,width,height]
|
|
@@ -137,7 +130,7 @@ with gr.Blocks(css='style.css') as demo:
|
|
| 137 |
ex.dataset.headers = [""]
|
| 138 |
|
| 139 |
# control_task.change(change_task_options, inputs=[control_task], outputs=[canny_opt, hough_opt, normal_opt], queue=False)
|
| 140 |
-
clean_btn.click(clean, inputs=[], outputs=[video_out], queue=False)
|
| 141 |
submit_btn.click(infer, inputs, outputs)
|
| 142 |
# share_button.click(None, [], [], _js=share_js)
|
| 143 |
|
|
|
|
| 25 |
def infer(prompt, image_inp, seed_inp, ddim_steps,width,height):
|
| 26 |
setup_seed(seed_inp)
|
| 27 |
args.num_sampling_steps = ddim_steps
|
|
|
|
|
|
|
| 28 |
img = cv2.imread(image_inp)
|
| 29 |
+
new_size = [height,width]
|
|
|
|
| 30 |
args.image_size = new_size
|
|
|
|
| 31 |
vae, model, text_encoder, diffusion = model_i2v_fun(args)
|
| 32 |
vae.to(device)
|
| 33 |
model.to(device)
|
|
|
|
| 54 |
video_ = ((video_clip * 0.5 + 0.5) * 255).add_(0.5).clamp_(0, 255).to(dtype=torch.uint8).cpu().permute(0, 2, 3, 1)
|
| 55 |
torchvision.io.write_video(os.path.join(args.save_img_path, prompt+ '.mp4'), video_, fps=8)
|
| 56 |
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
return os.path.join(args.save_img_path, prompt+ '.mp4')
|
| 59 |
|
| 60 |
|
| 61 |
|
| 62 |
+
# def clean():
|
| 63 |
# return gr.Image.update(value=None, visible=False), gr.Video.update(value=None)
|
| 64 |
+
# return gr.Video.update(value=None)
|
| 65 |
|
| 66 |
|
| 67 |
title = """
|
|
|
|
| 111 |
|
| 112 |
|
| 113 |
submit_btn = gr.Button("Generate video")
|
| 114 |
+
# clean_btn = gr.Button("Clean video")
|
| 115 |
|
| 116 |
video_out = gr.Video(label="Video result", elem_id="video-output", width = 800)
|
| 117 |
inputs = [prompt,image_inp, seed_inp, ddim_steps,width,height]
|
|
|
|
| 130 |
ex.dataset.headers = [""]
|
| 131 |
|
| 132 |
# control_task.change(change_task_options, inputs=[control_task], outputs=[canny_opt, hough_opt, normal_opt], queue=False)
|
| 133 |
+
# clean_btn.click(clean, inputs=[], outputs=[video_out], queue=False)
|
| 134 |
submit_btn.click(infer, inputs, outputs)
|
| 135 |
# share_button.click(None, [], [], _js=share_js)
|
| 136 |
|