Spaces:
Sleeping
Sleeping
Create train_model.py
Browse files- train_model.py +149 -0
train_model.py
ADDED
|
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# training_space/train_model.py (Training Script)
|
| 2 |
+
import argparse
|
| 3 |
+
from transformers import (
|
| 4 |
+
GPT2Config, GPT2LMHeadModel,
|
| 5 |
+
BertConfig, BertForSequenceClassification,
|
| 6 |
+
Trainer, TrainingArguments, AutoTokenizer,
|
| 7 |
+
DataCollatorForLanguageModeling, DataCollatorWithPadding
|
| 8 |
+
)
|
| 9 |
+
from datasets import load_dataset, Dataset
|
| 10 |
+
import torch
|
| 11 |
+
import os
|
| 12 |
+
from huggingface_hub import HfApi, HfFolder
|
| 13 |
+
|
| 14 |
+
def main():
|
| 15 |
+
parser = argparse.ArgumentParser()
|
| 16 |
+
parser.add_argument("--task", type=str, required=True, help="Task type: generation or classification")
|
| 17 |
+
parser.add_argument("--model_name", type=str, required=True, help="Name of the model")
|
| 18 |
+
parser.add_argument("--dataset", type=str, required=True, help="Path to the dataset")
|
| 19 |
+
parser.add_argument("--num_layers", type=int, default=12)
|
| 20 |
+
parser.add_argument("--attention_heads", type=int, default=1)
|
| 21 |
+
parser.add_argument("--hidden_size", type=int, default=64)
|
| 22 |
+
parser.add_argument("--vocab_size", type=int, default=30000)
|
| 23 |
+
parser.add_argument("--sequence_length", type=int, default=512)
|
| 24 |
+
args = parser.parse_args()
|
| 25 |
+
|
| 26 |
+
# Define output directory
|
| 27 |
+
output_dir = f"./models/{args.model_name}"
|
| 28 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 29 |
+
|
| 30 |
+
# Initialize Hugging Face API
|
| 31 |
+
api = HfApi()
|
| 32 |
+
hf_token = HfFolder.get_token()
|
| 33 |
+
|
| 34 |
+
# Initialize tokenizer (adjust based on task)
|
| 35 |
+
if args.task == "generation":
|
| 36 |
+
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
| 37 |
+
elif args.task == "classification":
|
| 38 |
+
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
| 39 |
+
else:
|
| 40 |
+
raise ValueError("Unsupported task type")
|
| 41 |
+
|
| 42 |
+
# Load and prepare dataset
|
| 43 |
+
if args.task == "generation":
|
| 44 |
+
dataset = load_dataset('text', data_files={'train': args.dataset})
|
| 45 |
+
def tokenize_function(examples):
|
| 46 |
+
return tokenizer(examples['text'], truncation=True, max_length=args.sequence_length)
|
| 47 |
+
elif args.task == "classification":
|
| 48 |
+
# For classification, assume the dataset is a simple text file with "text\tlabel" per line
|
| 49 |
+
with open(args.dataset, "r", encoding="utf-8") as f:
|
| 50 |
+
lines = f.readlines()
|
| 51 |
+
texts = []
|
| 52 |
+
labels = []
|
| 53 |
+
for line in lines:
|
| 54 |
+
parts = line.strip().split("\t")
|
| 55 |
+
if len(parts) == 2:
|
| 56 |
+
texts.append(parts[0])
|
| 57 |
+
labels.append(int(parts[1]))
|
| 58 |
+
dataset = Dataset.from_dict({"text": texts, "label": labels})
|
| 59 |
+
def tokenize_function(examples):
|
| 60 |
+
return tokenizer(examples['text'], truncation=True, max_length=args.sequence_length)
|
| 61 |
+
else:
|
| 62 |
+
raise ValueError("Unsupported task type")
|
| 63 |
+
|
| 64 |
+
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
| 65 |
+
|
| 66 |
+
if args.task == "generation":
|
| 67 |
+
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
| 68 |
+
elif args.task == "classification":
|
| 69 |
+
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
| 70 |
+
|
| 71 |
+
# Initialize model based on task
|
| 72 |
+
if args.task == "generation":
|
| 73 |
+
config = GPT2Config(
|
| 74 |
+
vocab_size=args.vocab_size,
|
| 75 |
+
n_positions=args.sequence_length,
|
| 76 |
+
n_ctx=args.sequence_length,
|
| 77 |
+
n_embd=args.hidden_size,
|
| 78 |
+
num_hidden_layers=args.num_layers,
|
| 79 |
+
num_attention_heads=args.attention_heads,
|
| 80 |
+
intermediate_size=4 * args.hidden_size,
|
| 81 |
+
hidden_act='gelu',
|
| 82 |
+
use_cache=True
|
| 83 |
+
)
|
| 84 |
+
model = GPT2LMHeadModel(config)
|
| 85 |
+
elif args.task == "classification":
|
| 86 |
+
config = BertConfig(
|
| 87 |
+
vocab_size=args.vocab_size,
|
| 88 |
+
max_position_embeddings=args.sequence_length,
|
| 89 |
+
hidden_size=args.hidden_size,
|
| 90 |
+
num_hidden_layers=args.num_layers,
|
| 91 |
+
num_attention_heads=args.attention_heads,
|
| 92 |
+
intermediate_size=4 * args.hidden_size,
|
| 93 |
+
hidden_act='gelu',
|
| 94 |
+
num_labels=2 # Adjust based on your classification task
|
| 95 |
+
)
|
| 96 |
+
model = BertForSequenceClassification(config)
|
| 97 |
+
else:
|
| 98 |
+
raise ValueError("Unsupported task type")
|
| 99 |
+
|
| 100 |
+
# Define training arguments
|
| 101 |
+
if args.task == "generation":
|
| 102 |
+
training_args = TrainingArguments(
|
| 103 |
+
output_dir=output_dir,
|
| 104 |
+
num_train_epochs=3,
|
| 105 |
+
per_device_train_batch_size=8,
|
| 106 |
+
save_steps=5000,
|
| 107 |
+
save_total_limit=2,
|
| 108 |
+
logging_steps=500,
|
| 109 |
+
learning_rate=5e-4,
|
| 110 |
+
remove_unused_columns=False
|
| 111 |
+
)
|
| 112 |
+
elif args.task == "classification":
|
| 113 |
+
training_args = TrainingArguments(
|
| 114 |
+
output_dir=output_dir,
|
| 115 |
+
num_train_epochs=3,
|
| 116 |
+
per_device_train_batch_size=16,
|
| 117 |
+
evaluation_strategy="epoch",
|
| 118 |
+
save_steps=5000,
|
| 119 |
+
save_total_limit=2,
|
| 120 |
+
logging_steps=500,
|
| 121 |
+
learning_rate=5e-5,
|
| 122 |
+
remove_unused_columns=False
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
# Initialize Trainer
|
| 126 |
+
trainer = Trainer(
|
| 127 |
+
model=model,
|
| 128 |
+
args=training_args,
|
| 129 |
+
train_dataset=tokenized_datasets['train'],
|
| 130 |
+
data_collator=data_collator,
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
# Start training
|
| 134 |
+
trainer.train()
|
| 135 |
+
|
| 136 |
+
# Save the final model
|
| 137 |
+
trainer.save_model(output_dir)
|
| 138 |
+
tokenizer.save_pretrained(output_dir)
|
| 139 |
+
|
| 140 |
+
# Push to Hugging Face Hub
|
| 141 |
+
model_repo = f"your-username/{args.model_name}"
|
| 142 |
+
api.create_repo(repo_id=model_repo, private=False, token=hf_token)
|
| 143 |
+
model.push_to_hub(model_repo, use_auth_token=hf_token)
|
| 144 |
+
tokenizer.push_to_hub(model_repo, use_auth_token=hf_token)
|
| 145 |
+
|
| 146 |
+
print(f"Model '{args.model_name}' trained and pushed to Hugging Face Hub at '{model_repo}'.")
|
| 147 |
+
|
| 148 |
+
if __name__ == "__main__":
|
| 149 |
+
main()
|