File size: 2,076 Bytes
9bfbfd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import torch
import torch.nn as nn

class UNet(nn.Module):
    def __init__(self):
        super(UNet, self).__init__()

        def conv_block(in_channels, out_channels):
            return nn.Sequential(
                nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
                nn.ReLU(inplace=True),
                nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
                nn.ReLU(inplace=True),
            )

        # Encoder
        self.enc1 = conv_block(3, 64)
        self.enc2 = conv_block(64, 128)
        self.enc3 = conv_block(128, 256)
        self.enc4 = conv_block(256, 512)

        self.pool = nn.MaxPool2d(2)

        # Bottleneck
        self.bottleneck = conv_block(512, 1024)

        # Decoder
        self.upconv4 = nn.ConvTranspose2d(1024, 512, kernel_size=2, stride=2)
        self.dec4 = conv_block(1024, 512)

        self.upconv3 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2)
        self.dec3 = conv_block(512, 256)

        self.upconv2 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)
        self.dec2 = conv_block(256, 128)

        self.upconv1 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)
        self.dec1 = conv_block(128, 64)

        self.conv_last = nn.Conv2d(64, 1, kernel_size=1)

    def forward(self, x):
        c1 = self.enc1(x)
        p1 = self.pool(c1)

        c2 = self.enc2(p1)
        p2 = self.pool(c2)

        c3 = self.enc3(p2)
        p3 = self.pool(c3)

        c4 = self.enc4(p3)
        p4 = self.pool(c4)

        bottleneck = self.bottleneck(p4)

        u4 = self.upconv4(bottleneck)
        u4 = torch.cat([u4, c4], dim=1)
        d4 = self.dec4(u4)

        u3 = self.upconv3(d4)
        u3 = torch.cat([u3, c3], dim=1)
        d3 = self.dec3(u3)

        u2 = self.upconv2(d3)
        u2 = torch.cat([u2, c2], dim=1)
        d2 = self.dec2(u2)

        u1 = self.upconv1(d2)
        u1 = torch.cat([u1, c1], dim=1)
        d1 = self.dec1(u1)

        return torch.sigmoid(self.conv_last(d1))  # sigmoid kept (matches BCELoss training)