Spaces:
Sleeping
Sleeping
File size: 9,988 Bytes
5f66bcf 9b21e07 5f66bcf 7d04939 5f66bcf 7d04939 5f66bcf 7d04939 5f66bcf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
import os
import yaml
import torch
import torchaudio.transforms as T
from datasets import load_dataset
from huggingface_hub import snapshot_download
from snac import SNAC
from transformers import AutoTokenizer
def load_config(config_path):
"""
Load tokenizer configuration from YAML file.
Args:
config_path: Path to YAML config file
Returns:
Dictionary with configuration values
"""
with open(config_path, 'r') as f:
config = yaml.safe_load(f)
return config
def tokenise_audio(waveform, snac_model, ds_sample_rate, target_sample_rate, audio_tokens_start):
"""
Tokenize audio waveform using SNAC codec.
Args:
waveform: Audio array from dataset
snac_model: SNAC model instance
ds_sample_rate: Original dataset sample rate
target_sample_rate: Target sample rate (24000)
audio_tokens_start: Offset for audio tokens
Returns:
List of audio token IDs with proper offsets applied
"""
# Convert to tensor and prepare for processing
waveform = torch.from_numpy(waveform).unsqueeze(0)
waveform = waveform.to(dtype=torch.float32)
# Resample to target sample rate if needed
resample_transform = T.Resample(orig_freq=ds_sample_rate, new_freq=target_sample_rate)
waveform = resample_transform(waveform)
waveform = waveform.unsqueeze(0).to("cuda")
# Generate SNAC codes
with torch.inference_mode():
codes = snac_model.encode(waveform)
# Interleave codes from 3 codebooks with proper offsets
# SNAC uses hierarchical vector quantization with 3 levels
all_codes = []
num_frames = codes[0].shape[1]
for i in range(num_frames):
# Level 0: 1 code per frame
all_codes.append(codes[0][0][i].item() + audio_tokens_start)
# Level 1: 2 codes per frame
all_codes.append(codes[1][0][2*i].item() + audio_tokens_start + 4096)
# Level 2: 4 codes per frame
all_codes.append(codes[2][0][4*i].item() + audio_tokens_start + (2 * 4096))
all_codes.append(codes[2][0][4*i + 1].item() + audio_tokens_start + (3 * 4096))
# Continue level 1 and 2 interleaving
all_codes.append(codes[1][0][2*i + 1].item() + audio_tokens_start + (4 * 4096))
all_codes.append(codes[2][0][4*i + 2].item() + audio_tokens_start + (5 * 4096))
all_codes.append(codes[2][0][4*i + 3].item() + audio_tokens_start + (6 * 4096))
return all_codes
def remove_duplicate_frames(codes_list):
"""
Remove consecutive duplicate audio frames to reduce redundancy.
Each frame consists of 7 codes (1 + 2 + 4 from 3 SNAC codebook levels).
Frames with identical first codes are considered duplicates.
Args:
codes_list: List of audio codes
Returns:
Deduplicated codes list
"""
if len(codes_list) % 7 != 0:
raise ValueError("Input list length must be divisible by 7")
# Keep first frame
result = codes_list[:7]
removed_frames = 0
# Check each subsequent frame
for i in range(7, len(codes_list), 7):
current_first_code = codes_list[i]
previous_first_code = result[-7]
if current_first_code != previous_first_code:
result.extend(codes_list[i:i+7])
else:
removed_frames += 1
return result
def process_dataset(
original_dataset,
output_dataset,
model_type="qwen3",
text_field="text_scribe",
target_sample_rate=24000
):
"""
Process dataset: tokenize audio and text, create training sequences.
Args:
original_dataset: HuggingFace dataset path to process
output_dataset: HuggingFace dataset path for output
model_type: Model type - either "qwen3" or "lfm2" (default: "qwen3")
text_field: Name of text field in dataset (default: "text_scribe")
target_sample_rate: Target audio sample rate (default: 24000)
"""
try:
# Set tokenizer and config based on model type
print(f"Setting up configuration for model_type: {model_type}")
if model_type == "qwen3":
tokenizer_model = "Qwen/Qwen3-0.6B"
config_path = "qwen3.yaml"
elif model_type == "lfm2":
tokenizer_model = "LiquidAI/LFM2-350M"
config_path = "lfm2.yaml"
else:
raise ValueError(f"Invalid model_type: {model_type}. Must be 'qwen3' or 'lfm2'")
print(f"Tokenizer Model: {tokenizer_model}")
print(f"Config Path: {config_path}")
# Load configuration
print(f"Loading config from: {config_path}")
config = load_config(config_path)
print(f"Config loaded successfully. Type: {type(config)}")
if not isinstance(config, dict):
raise TypeError(f"Config must be a dictionary, got {type(config)}")
except Exception as e:
print(f"Error in initial setup: {str(e)}")
raise
try:
print("Extracting config values...")
TOKENIZER_LENGTH = config['TOKENIZER_LENGTH']
START_OF_TEXT = config['START_OF_TEXT']
END_OF_TEXT = config['END_OF_TEXT']
START_OF_SPEECH = config['START_OF_SPEECH']
END_OF_SPEECH = config['END_OF_SPEECH']
START_OF_HUMAN = config['START_OF_HUMAN']
END_OF_HUMAN = config['END_OF_HUMAN']
START_OF_AI = config['START_OF_AI']
END_OF_AI = config['END_OF_AI']
PAD_TOKEN = config['PAD_TOKEN']
AUDIO_TOKENS_START = config['AUDIO_TOKENS_START']
print("✓ All config values extracted successfully")
except KeyError as e:
print(f"Missing key in config: {e}")
print(f"Available keys: {list(config.keys())}")
raise
except Exception as e:
print(f"Error extracting config values: {str(e)}")
raise
# Download dataset
print(f"Downloading dataset: {original_dataset}")
snapshot_download(
repo_id=original_dataset,
repo_type="dataset",
revision="main",
max_workers=64,
token=os.environ.get("HF_TOKEN")
)
# Load dataset
print("Loading dataset...")
ds = load_dataset(original_dataset, split="train", token=os.environ.get("HF_TOKEN"))
ds_sample_rate = ds[0]["audio"]["sampling_rate"]
# Load SNAC model
print("Loading SNAC model: hubertsiuzdak/snac_24khz")
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
snac_model = snac_model.to("cuda")
# Define processing functions
def add_codes(example):
"""Add audio codes to dataset example."""
codes_list = None
try:
audio_data = example.get("audio")
if audio_data and "array" in audio_data:
audio_array = audio_data["array"]
codes_list = tokenise_audio(
audio_array,
snac_model,
ds_sample_rate,
target_sample_rate,
AUDIO_TOKENS_START
)
except Exception as e:
print(f"Skipping row due to error: {e}")
example["codes_list"] = codes_list
return example
# Process dataset: tokenize audio
print("Tokenizing audio...")
ds = ds.map(add_codes, remove_columns=["audio"])
# Load text tokenizer
print(f"Loading tokenizer: {tokenizer_model}")
tokenizer = AutoTokenizer.from_pretrained(tokenizer_model)
num_proc = os.cpu_count() - 2
# Filter out failed tokenizations
print("Filtering invalid examples...")
ds = ds.filter(lambda x: x["codes_list"] is not None)
ds = ds.filter(lambda x: len(x["codes_list"]) > 0)
# Remove duplicate frames
def remove_duplicate_frames_wrapper(example):
"""Wrapper for remove_duplicate_frames."""
example["codes_list"] = remove_duplicate_frames(example["codes_list"])
return example
print("Removing duplicate frames...")
ds = ds.map(remove_duplicate_frames_wrapper, num_proc=num_proc)
print(f"""
NOTE: Text prompt customization
You can modify the text prompt in create_input_ids() below.
For multispeaker models, ensure your dataset has a "source" field.
- Single-speaker: uses example['{text_field}']
- Multi-speaker: uses example['source']: example['{text_field}']
""")
def create_input_ids(example):
"""
Create training input sequence with proper formatting.
Format: [HUMAN] text [/HUMAN] [AI] [SPEECH] audio_codes [/SPEECH] [/AI]
"""
# Determine whether to include the source field
if "source" in example:
text_prompt = f"{example['source']}: {example[text_field]}"
else:
text_prompt = example[text_field]
# Tokenize text input
text_ids = tokenizer.encode(text_prompt, add_special_tokens=True)
text_ids.append(END_OF_TEXT)
example["text_tokens"] = text_ids
# Construct full sequence with special tokens
input_ids = (
[START_OF_HUMAN]
+ example["text_tokens"]
+ [END_OF_HUMAN]
+ [START_OF_AI]
+ [START_OF_SPEECH]
+ example["codes_list"]
+ [END_OF_SPEECH]
+ [END_OF_AI]
)
example["input_ids"] = input_ids
example["labels"] = input_ids
example["attention_mask"] = [1] * len(input_ids)
return example
# Create final training sequences
print("Creating input sequences...")
ds = ds.map(
create_input_ids,
num_proc=num_proc,
remove_columns=[text_field, "codes_list"]
)
# Keep only training columns
columns_to_keep = ["input_ids", "labels", "attention_mask"]
columns_to_remove = [col for col in ds.column_names if col not in columns_to_keep]
ds = ds.remove_columns(columns_to_remove)
# Upload processed dataset
print(f"Pushing dataset to: {output_dataset}")
ds.push_to_hub(output_dataset, token=os.environ.get("HF_TOKEN"))
print("Done!")
|