Spaces:
Paused
Paused
| import torch | |
| import numpy as np | |
| from torch.nn.utils import remove_weight_norm | |
| from torch.nn.utils.parametrizations import weight_norm | |
| from typing import Optional | |
| from rvc.lib.algorithm.residuals import LRELU_SLOPE, ResBlock | |
| from rvc.lib.algorithm.commons import init_weights | |
| class Generator(torch.nn.Module): | |
| """Generator for synthesizing audio. | |
| Args: | |
| initial_channel (int): Number of channels in the initial convolutional layer. | |
| resblock (str): Type of residual block to use (1 or 2). | |
| resblock_kernel_sizes (list): Kernel sizes of the residual blocks. | |
| resblock_dilation_sizes (list): Dilation rates of the residual blocks. | |
| upsample_rates (list): Upsampling rates. | |
| upsample_initial_channel (int): Number of channels in the initial upsampling layer. | |
| upsample_kernel_sizes (list): Kernel sizes of the upsampling layers. | |
| gin_channels (int, optional): Number of channels for the global conditioning input. Defaults to 0. | |
| """ | |
| def __init__( | |
| self, | |
| initial_channel: int, | |
| resblock_kernel_sizes: list, | |
| resblock_dilation_sizes: list, | |
| upsample_rates: list, | |
| upsample_initial_channel: int, | |
| upsample_kernel_sizes: list, | |
| gin_channels: int = 0, | |
| ): | |
| super(Generator, self).__init__() | |
| self.num_kernels = len(resblock_kernel_sizes) | |
| self.num_upsamples = len(upsample_rates) | |
| self.conv_pre = torch.nn.Conv1d( | |
| initial_channel, upsample_initial_channel, 7, 1, padding=3 | |
| ) | |
| self.ups = torch.nn.ModuleList() | |
| self.resblocks = torch.nn.ModuleList() | |
| for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): | |
| self.ups.append( | |
| weight_norm( | |
| torch.nn.ConvTranspose1d( | |
| upsample_initial_channel // (2**i), | |
| upsample_initial_channel // (2 ** (i + 1)), | |
| k, | |
| u, | |
| padding=(k - u) // 2, | |
| ) | |
| ) | |
| ) | |
| ch = upsample_initial_channel // (2 ** (i + 1)) | |
| for j, (k, d) in enumerate( | |
| zip(resblock_kernel_sizes, resblock_dilation_sizes) | |
| ): | |
| self.resblocks.append(ResBlock(ch, k, d)) | |
| self.conv_post = torch.nn.Conv1d(ch, 1, 7, 1, padding=3, bias=False) | |
| self.ups.apply(init_weights) | |
| if gin_channels != 0: | |
| self.cond = torch.nn.Conv1d(gin_channels, upsample_initial_channel, 1) | |
| def forward(self, x: torch.Tensor, g: Optional[torch.Tensor] = None): | |
| x = self.conv_pre(x) | |
| if g is not None: | |
| x = x + self.cond(g) | |
| for i in range(self.num_upsamples): | |
| x = torch.nn.functional.leaky_relu(x, LRELU_SLOPE) | |
| x = self.ups[i](x) | |
| xs = None | |
| for j in range(self.num_kernels): | |
| if xs == None: | |
| xs = self.resblocks[i * self.num_kernels + j](x) | |
| else: | |
| xs += self.resblocks[i * self.num_kernels + j](x) | |
| x = xs / self.num_kernels | |
| x = torch.nn.functional.leaky_relu(x) | |
| x = self.conv_post(x) | |
| x = torch.tanh(x) | |
| return x | |
| def __prepare_scriptable__(self): | |
| """Prepares the module for scripting.""" | |
| for l in self.ups_and_resblocks: | |
| for hook in l._forward_pre_hooks.values(): | |
| if ( | |
| hook.__module__ == "torch.nn.utils.parametrizations.weight_norm" | |
| and hook.__class__.__name__ == "WeightNorm" | |
| ): | |
| torch.nn.utils.remove_weight_norm(l) | |
| return self | |
| def remove_weight_norm(self): | |
| """Removes weight normalization from the upsampling and residual blocks.""" | |
| for l in self.ups: | |
| remove_weight_norm(l) | |
| for l in self.resblocks: | |
| l.remove_weight_norm() | |
| class SineGenerator(torch.nn.Module): | |
| """ | |
| A sine wave generator that synthesizes waveforms with optional harmonic overtones and noise. | |
| Args: | |
| sampling_rate (int): The sampling rate in Hz. | |
| num_harmonics (int, optional): The number of harmonic overtones to include. Defaults to 0. | |
| sine_amplitude (float, optional): The amplitude of the sine waveform. Defaults to 0.1. | |
| noise_stddev (float, optional): The standard deviation of Gaussian noise. Defaults to 0.003. | |
| voiced_threshold (float, optional): F0 threshold for distinguishing voiced/unvoiced frames. Defaults to 0. | |
| """ | |
| def __init__( | |
| self, | |
| sampling_rate: int, | |
| num_harmonics: int = 0, | |
| sine_amplitude: float = 0.1, | |
| noise_stddev: float = 0.003, | |
| voiced_threshold: float = 0.0, | |
| ): | |
| super(SineGenerator, self).__init__() | |
| self.sampling_rate = sampling_rate | |
| self.num_harmonics = num_harmonics | |
| self.sine_amplitude = sine_amplitude | |
| self.noise_stddev = noise_stddev | |
| self.voiced_threshold = voiced_threshold | |
| self.waveform_dim = self.num_harmonics + 1 # fundamental + harmonics | |
| def _compute_voiced_unvoiced(self, f0: torch.Tensor) -> torch.Tensor: | |
| """ | |
| Generate a binary mask to indicate voiced/unvoiced frames. | |
| Args: | |
| f0 (torch.Tensor): Fundamental frequency tensor (batch_size, length). | |
| """ | |
| uv_mask = (f0 > self.voiced_threshold).float() | |
| return uv_mask | |
| def _generate_sine_wave( | |
| self, f0: torch.Tensor, upsampling_factor: int | |
| ) -> torch.Tensor: | |
| """ | |
| Generate sine waves for the fundamental frequency and its harmonics. | |
| Args: | |
| f0 (torch.Tensor): Fundamental frequency tensor (batch_size, length, 1). | |
| upsampling_factor (int): Upsampling factor. | |
| """ | |
| batch_size, length, _ = f0.shape | |
| # Create an upsampling grid | |
| upsampling_grid = torch.arange( | |
| 1, upsampling_factor + 1, dtype=f0.dtype, device=f0.device | |
| ) | |
| # Calculate phase increments | |
| phase_increments = (f0 / self.sampling_rate) * upsampling_grid | |
| phase_remainder = torch.fmod(phase_increments[:, :-1, -1:] + 0.5, 1.0) - 0.5 | |
| cumulative_phase = phase_remainder.cumsum(dim=1).fmod(1.0).to(f0.dtype) | |
| phase_increments += torch.nn.functional.pad( | |
| cumulative_phase, (0, 0, 1, 0), mode="constant" | |
| ) | |
| # Reshape to match the sine wave shape | |
| phase_increments = phase_increments.reshape(batch_size, -1, 1) | |
| # Scale for harmonics | |
| harmonic_scale = torch.arange( | |
| 1, self.waveform_dim + 1, dtype=f0.dtype, device=f0.device | |
| ).reshape(1, 1, -1) | |
| phase_increments *= harmonic_scale | |
| # Add random phase offset (except for the fundamental) | |
| random_phase = torch.rand(1, 1, self.waveform_dim, device=f0.device) | |
| random_phase[..., 0] = 0 # Fundamental frequency has no random offset | |
| phase_increments += random_phase | |
| # Generate sine waves | |
| sine_waves = torch.sin(2 * np.pi * phase_increments) | |
| return sine_waves | |
| def forward(self, f0: torch.Tensor, upsampling_factor: int): | |
| """ | |
| Forward pass to generate sine waveforms with noise and voiced/unvoiced masking. | |
| Args: | |
| f0 (torch.Tensor): Fundamental frequency tensor (batch_size, length, 1). | |
| upsampling_factor (int): Upsampling factor. | |
| """ | |
| with torch.no_grad(): | |
| # Expand `f0` to include waveform dimensions | |
| f0 = f0.unsqueeze(-1) | |
| # Generate sine waves | |
| sine_waves = ( | |
| self._generate_sine_wave(f0, upsampling_factor) * self.sine_amplitude | |
| ) | |
| # Compute voiced/unvoiced mask | |
| voiced_mask = self._compute_voiced_unvoiced(f0) | |
| # Upsample voiced/unvoiced mask | |
| voiced_mask = torch.nn.functional.interpolate( | |
| voiced_mask.transpose(2, 1), | |
| scale_factor=float(upsampling_factor), | |
| mode="nearest", | |
| ).transpose(2, 1) | |
| # Compute noise amplitude | |
| noise_amplitude = voiced_mask * self.noise_stddev + (1 - voiced_mask) * ( | |
| self.sine_amplitude / 3 | |
| ) | |
| # Add Gaussian noise | |
| noise = noise_amplitude * torch.randn_like(sine_waves) | |
| # Combine sine waves and noise | |
| sine_waveforms = sine_waves * voiced_mask + noise | |
| return sine_waveforms, voiced_mask, noise | |