File size: 2,278 Bytes
30833f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e137bba
 
30833f2
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# app.py

import os
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr
import spaces

zero = torch.Tensor([0]).cuda()

# β€”β€”β€” CONFIG β€”β€”β€”
MODEL_NAME = "Walid-Ahmed/finetuned_falcon_psychology-question-answer"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# β€”β€”β€” LOAD TOKENIZER & MODEL β€”β€”β€”
tokenizer = AutoTokenizer.from_pretrained(
    MODEL_NAME,
)
model = AutoModelForCausalLM.from_pretrained(
    MODEL_NAME,
)
model.to(device)
model.eval()

# β€”β€”β€” PROMPT TEMPLATE β€”β€”β€”
chat_prompt = """### Instruction:
{}

### Input:
{}

### Response:
{}"""

# β€”β€”β€” INFERENCE FUNCTION β€”β€”β€”
@spaces.GPU
def answer_question(user_input: str, max_new_tokens: int = 64, temperature: float = 0.7):
    print(zero.device) # <-- 'cuda:0' πŸ€—
    # fill in the template
    prompt = chat_prompt.format("", user_input, "")
    # tokenize & move to device
    inputs = tokenizer(prompt, return_tensors="pt").to(device)
    # generate
    outputs = model.generate(
        input_ids=inputs.input_ids,
        max_new_tokens=max_new_tokens,
        temperature=temperature,
        top_p=0.9,
        do_sample=True,
        pad_token_id=tokenizer.eos_token_id,
    )
    # decode and extract after "### Response:"
    decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
    response = decoded.split("### Response:")[-1].strip()
    return response

# β€”β€”β€” GRADIO INTERFACE β€”β€”β€”
examples = [
    ["Who is known for their work on classical conditioning?"],
    ["What are effective CBT techniques for managing insomnia?"],
    ["How can someone cope with panic attacks in public places?"],
]

iface = gr.Interface(
    fn=answer_question,
    inputs=[
        gr.Textbox(lines=2, label="Psychology Question"),
        gr.Slider(16, 256, value=256, step=1, label="Max New Tokens"),
        gr.Slider(0.0, 1.0, value=0.1, step=0.01, label="Temperature"),
    ],
    outputs=gr.Textbox(label="Model Response"),
    examples=examples,
    title="Falcon-PsychQA Demo",
    description="Enter a psychology-related question and get back your fine-tuned Falcon model’s answer.",
    allow_flagging="never",
)

if __name__ == "__main__":
    iface.launch(share=True,debug=True )