Spaces:
Runtime error
Runtime error
File size: 20,072 Bytes
670666f 3201606 b74f5b1 670666f 3201606 71139cc 3201606 670666f 71139cc 3201606 670666f 3201606 670666f 3201606 71139cc 3201606 71139cc 3201606 71139cc 3201606 71139cc 3201606 71139cc 3201606 71139cc 3201606 bfea61c 71139cc 3201606 71139cc 3201606 670666f b74f5b1 670666f 71139cc 3201606 670666f 3201606 71139cc 3201606 670666f 71139cc 3201606 71139cc 3201606 670666f 3201606 71139cc 3201606 71139cc 3201606 71139cc 3201606 71139cc 3201606 71139cc 3201606 71139cc 3201606 71139cc 3201606 71139cc 3201606 71139cc 3201606 71139cc 3201606 71139cc 3201606 71139cc 3201606 71139cc 3201606 670666f 3201606 71139cc 3201606 71139cc 3201606 71139cc 3201606 71139cc 3201606 71139cc 3201606 71139cc 3201606 71139cc 3201606 71139cc 3201606 71139cc 3201606 71139cc 3201606 670666f 3201606 670666f 3201606 71139cc 3201606 71139cc 3201606 670666f b74f5b1 71139cc b74f5b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 |
import gradio as gr
import numpy as np
import os
import torch
import torch.quantization
import random
import subprocess
# Install flash-attn without CUDA extensions, which is suitable for CPU-only environments.
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
from accelerate import load_checkpoint_and_dispatch, init_empty_weights
from PIL import Image
from data.data_utils import add_special_tokens, pil_img2rgb
from data.transforms import ImageTransform
from inferencer import InterleaveInferencer
from modeling.autoencoder import load_ae
from modeling.bagel import (
BagelConfig, Bagel, Qwen2Config, Qwen2ForCausalLM,
SiglipVisionConfig, SiglipVisionModel
)
from modeling.qwen2 import Qwen2Tokenizer
from huggingface_hub import snapshot_download
# --- Model Download ---
save_dir = "./model_weights"
repo_id = "Wayne-King/SRUM_BAGEL_7B_MoT"
cache_dir = save_dir + "/cache"
snapshot_download(
cache_dir=cache_dir,
local_dir=save_dir,
repo_id=repo_id,
local_dir_use_symlinks=False,
resume_download=True,
allow_patterns=["*.json", "*.safetensors", "*.bin", "*.py", "*.md", "*.txt"],
)
# --- Model Initialization ---
model_path = save_dir
device = "cpu" # Set device to CPU
llm_config = Qwen2Config.from_json_file(os.path.join(model_path, "llm_config.json"))
llm_config.qk_norm = True
llm_config.tie_word_embeddings = False
llm_config.layer_module = "Qwen2MoTDecoderLayer"
vit_config = SiglipVisionConfig.from_json_file(os.path.join(model_path, "vit_config.json"))
vit_config.rope = False
vit_config.num_hidden_layers -= 1
vae_model, vae_config = load_ae(local_path=os.path.join(model_path, "ae.safetensors"))
# Move VAE model to CPU
vae_model.to(device)
config = BagelConfig(
visual_gen=True,
visual_und=True,
llm_config=llm_config,
vit_config=vit_config,
vae_config=vae_config,
vit_max_num_patch_per_side=70,
connector_act='gelu_pytorch_tanh',
latent_patch_size=2,
max_latent_size=64,
)
with init_empty_weights():
language_model = Qwen2ForCausalLM(llm_config)
vit_model = SiglipVisionModel(vit_config)
model = Bagel(language_model, vit_model, config)
model.vit_model.vision_model.embeddings.convert_conv2d_to_linear(vit_config, meta=True)
tokenizer = Qwen2Tokenizer.from_pretrained(model_path)
tokenizer, new_token_ids, _ = add_special_tokens(tokenizer)
vae_transform = ImageTransform(1024, 512, 16)
vit_transform = ImageTransform(980, 224, 14)
# --- Model Loading for CPU ---
# Removed multi-GPU device mapping logic.
# We will load the entire model onto the CPU.
# Using float32 for better CPU compatibility instead of bfloat16.
model = load_checkpoint_and_dispatch(
model,
checkpoint=os.path.join(model_path, "model.safetensors"),
device_map={"":"cpu"}, # Map all model parts to CPU
offload_buffers=True,
offload_folder="offload",
dtype=torch.float32, # Use float32 for CPU
force_hooks=True,
).eval()
# --- INT8 Quantization ---
# Apply dynamic quantization to the language model component for CPU optimization.
# This converts the linear layer weights to int8, reducing memory and speeding up inference.
print("Applying INT8 dynamic quantization to the language model...")
model.language_model = torch.quantization.quantize_dynamic(
model.language_model, {torch.nn.Linear}, dtype=torch.qint8
)
print("Quantization complete.")
# --- Inferencer Preparing ---
inferencer = InterleaveInferencer(
model=model,
vae_model=vae_model,
tokenizer=tokenizer,
vae_transform=vae_transform,
vit_transform=vit_transform,
new_token_ids=new_token_ids,
)
def set_seed(seed):
"""Set random seeds for reproducibility"""
if seed > 0:
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
# Conditional check for CUDA availability (will be false in CPU-only)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
return seed
# --- Inference Functions (GPU Decorators Removed) ---
# Text to Image function with thinking option and hyperparameters
def text_to_image(prompt, show_thinking=False, cfg_text_scale=4.0, cfg_interval=0.4,
timestep_shift=3.0, num_timesteps=50,
cfg_renorm_min=1.0, cfg_renorm_type="global",
max_think_token_n=1024, do_sample=False, text_temperature=0.3,
seed=0, image_ratio="1:1"):
# Set seed for reproducibility
set_seed(seed)
if image_ratio == "1:1":
image_shapes = (1024, 1024)
elif image_ratio == "4:3":
image_shapes = (768, 1024)
elif image_ratio == "3:4":
image_shapes = (1024, 768)
elif image_ratio == "16:9":
image_shapes = (576, 1024)
elif image_ratio == "9:16":
image_shapes = (1024, 576)
# Set hyperparameters
inference_hyper = dict(
max_think_token_n=max_think_token_n if show_thinking else 1024,
do_sample=do_sample if show_thinking else False,
text_temperature=text_temperature if show_thinking else 0.3,
cfg_text_scale=cfg_text_scale,
cfg_interval=[cfg_interval, 1.0], # End fixed at 1.0
timestep_shift=timestep_shift,
num_timesteps=num_timesteps,
cfg_renorm_min=cfg_renorm_min,
cfg_renorm_type=cfg_renorm_type,
image_shapes=image_shapes,
)
result = {"text": "", "image": None}
# Call inferencer with or without think parameter based on user choice
for i in inferencer(text=prompt, think=show_thinking, understanding_output=False, **inference_hyper):
if type(i) == str:
result["text"] += i
else:
result["image"] = i
yield result["image"], result.get("text", None)
# Image Understanding function with thinking option and hyperparameters
def image_understanding(image: Image.Image, prompt: str, show_thinking=False,
do_sample=False, text_temperature=0.3, max_new_tokens=512):
if image is None:
return "Please upload an image."
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
image = pil_img2rgb(image)
# Set hyperparameters
inference_hyper = dict(
do_sample=do_sample,
text_temperature=text_temperature,
max_think_token_n=max_new_tokens, # Set max_length
)
result = {"text": "", "image": None}
# Use show_thinking parameter to control thinking process
for i in inferencer(image=image, text=prompt, think=show_thinking,
understanding_output=True, **inference_hyper):
if type(i) == str:
result["text"] += i
else:
result["image"] = i
yield result["text"]
# Image Editing function with thinking option and hyperparameters
def edit_image(image: Image.Image, prompt: str, show_thinking=False, cfg_text_scale=4.0,
cfg_img_scale=2.0, cfg_interval=0.0,
timestep_shift=3.0, num_timesteps=50, cfg_renorm_min=1.0,
cfg_renorm_type="text_channel", max_think_token_n=1024,
do_sample=False, text_temperature=0.3, seed=0):
# Set seed for reproducibility
set_seed(seed)
if image is None:
return "Please upload an image.", ""
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
image = pil_img2rgb(image)
# Set hyperparameters
inference_hyper = dict(
max_think_token_n=max_think_token_n if show_thinking else 1024,
do_sample=do_sample if show_thinking else False,
text_temperature=text_temperature if show_thinking else 0.3,
cfg_text_scale=cfg_text_scale,
cfg_img_scale=cfg_img_scale,
cfg_interval=[cfg_interval, 1.0], # End fixed at 1.0
timestep_shift=timestep_shift,
num_timesteps=num_timesteps,
cfg_renorm_min=cfg_renorm_min,
cfg_renorm_type=cfg_renorm_type,
)
# Include thinking parameter based on user choice
result = {"text": "", "image": None}
for i in inferencer(image=image, text=prompt, think=show_thinking, understanding_output=False, **inference_hyper):
if type(i) == str:
result["text"] += i
else:
result["image"] = i
yield result["image"], result.get("text", "")
# Helper function to load example images
def load_example_image(image_path):
try:
return Image.open(image_path)
except Exception as e:
print(f"Error loading example image: {e}")
return None
# --- Gradio UI (Unchanged) ---
with gr.Blocks() as demo:
gr.Markdown("# π₯― [BAGEL](https://bagel-ai.org/) - CPU Version")
with gr.Tab("π Text to Image"):
txt_input = gr.Textbox(
label="Prompt",
value="A female cosplayer portraying an ethereal fairy or elf, wearing a flowing dress made of delicate fabrics in soft, mystical colors like emerald green and silver. She has pointed ears, a gentle, enchanting expression, and her outfit is adorned with sparkling jewels and intricate patterns. The background is a magical forest with glowing plants, mystical creatures, and a serene atmosphere."
)
with gr.Row():
show_thinking = gr.Checkbox(label="Thinking", value=False)
with gr.Accordion("Inference Hyperparameters", open=False):
with gr.Group():
with gr.Row():
seed = gr.Slider(minimum=0, maximum=1000000, value=0, step=1,
label="Seed", info="0 for random seed, positive for reproducible results")
image_ratio = gr.Dropdown(choices=["1:1", "4:3", "3:4", "16:9", "9:16"],
value="1:1", label="Image Ratio",
info="The longer size is fixed to 1024")
with gr.Row():
cfg_text_scale = gr.Slider(minimum=1.0, maximum=8.0, value=4.0, step=0.1, interactive=True,
label="CFG Text Scale", info="Controls how strongly the model follows the text prompt (4.0-8.0)")
cfg_interval = gr.Slider(minimum=0.0, maximum=1.0, value=0.4, step=0.1,
label="CFG Interval", info="Start of CFG application interval (end is fixed at 1.0)")
with gr.Row():
cfg_renorm_type = gr.Dropdown(choices=["global", "local", "text_channel"],
value="global", label="CFG Renorm Type",
info="If the genrated image is blurry, use 'global'")
cfg_renorm_min = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.1, interactive=True,
label="CFG Renorm Min", info="1.0 disables CFG-Renorm")
with gr.Row():
num_timesteps = gr.Slider(minimum=10, maximum=100, value=50, step=5, interactive=True,
label="Timesteps", info="Total denoising steps")
timestep_shift = gr.Slider(minimum=1.0, maximum=5.0, value=3.0, step=0.5, interactive=True,
label="Timestep Shift", info="Higher values for layout, lower for details")
thinking_params = gr.Group(visible=False)
with thinking_params:
with gr.Row():
do_sample = gr.Checkbox(label="Sampling", value=False, info="Enable sampling for text generation")
max_think_token_n = gr.Slider(minimum=64, maximum=4006, value=1024, step=64, interactive=True,
label="Max Think Tokens", info="Maximum number of tokens for thinking")
text_temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.3, step=0.1, interactive=True,
label="Temperature", info="Controls randomness in text generation")
thinking_output = gr.Textbox(label="Thinking Process", visible=False)
img_output = gr.Image(label="Generated Image")
gen_btn = gr.Button("Generate", variant="primary")
def update_thinking_visibility(show):
return gr.update(visible=show), gr.update(visible=show)
show_thinking.change(
fn=update_thinking_visibility,
inputs=[show_thinking],
outputs=[thinking_output, thinking_params]
)
gr.on(
triggers=[gen_btn.click, txt_input.submit],
fn=text_to_image,
inputs=[
txt_input, show_thinking, cfg_text_scale,
cfg_interval, timestep_shift,
num_timesteps, cfg_renorm_min, cfg_renorm_type,
max_think_token_n, do_sample, text_temperature, seed, image_ratio
],
outputs=[img_output, thinking_output]
)
with gr.Tab("ποΈ Image Edit"):
with gr.Row():
with gr.Column(scale=1):
edit_image_input = gr.Image(label="Input Image", value=load_example_image('test_images/women.jpg'))
edit_prompt = gr.Textbox(
label="Prompt",
value="She boards a modern subway, quietly reading a folded newspaper, wearing the same clothes."
)
with gr.Column(scale=1):
edit_image_output = gr.Image(label="Result")
edit_thinking_output = gr.Textbox(label="Thinking Process", visible=False)
with gr.Row():
edit_show_thinking = gr.Checkbox(label="Thinking", value=False)
with gr.Accordion("Inference Hyperparameters", open=False):
with gr.Group():
with gr.Row():
edit_seed = gr.Slider(minimum=0, maximum=1000000, value=0, step=1, interactive=True,
label="Seed", info="0 for random seed, positive for reproducible results")
edit_cfg_text_scale = gr.Slider(minimum=1.0, maximum=8.0, value=4.0, step=0.1, interactive=True,
label="CFG Text Scale", info="Controls how strongly the model follows the text prompt")
with gr.Row():
edit_cfg_img_scale = gr.Slider(minimum=1.0, maximum=4.0, value=2.0, step=0.1, interactive=True,
label="CFG Image Scale", info="Controls how much the model preserves input image details")
edit_cfg_interval = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.1, interactive=True,
label="CFG Interval", info="Start of CFG application interval (end is fixed at 1.0)")
with gr.Row():
edit_cfg_renorm_type = gr.Dropdown(choices=["global", "local", "text_channel"],
value="text_channel", label="CFG Renorm Type",
info="If the genrated image is blurry, use 'global")
edit_cfg_renorm_min = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.1, interactive=True,
label="CFG Renorm Min", info="1.0 disables CFG-Renorm")
with gr.Row():
edit_num_timesteps = gr.Slider(minimum=10, maximum=100, value=50, step=5, interactive=True,
label="Timesteps", info="Total denoising steps")
edit_timestep_shift = gr.Slider(minimum=1.0, maximum=10.0, value=3.0, step=0.5, interactive=True,
label="Timestep Shift", info="Higher values for layout, lower for details")
edit_thinking_params = gr.Group(visible=False)
with edit_thinking_params:
with gr.Row():
edit_do_sample = gr.Checkbox(label="Sampling", value=False, info="Enable sampling for text generation")
edit_max_think_token_n = gr.Slider(minimum=64, maximum=4006, value=1024, step=64, interactive=True,
label="Max Think Tokens", info="Maximum number of tokens for thinking")
edit_text_temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.3, step=0.1, interactive=True,
label="Temperature", info="Controls randomness in text generation")
edit_btn = gr.Button("Submit", variant="primary")
def update_edit_thinking_visibility(show):
return gr.update(visible=show), gr.update(visible=show)
edit_show_thinking.change(
fn=update_edit_thinking_visibility,
inputs=[edit_show_thinking],
outputs=[edit_thinking_output, edit_thinking_params]
)
gr.on(
triggers=[edit_btn.click, edit_prompt.submit],
fn=edit_image,
inputs=[
edit_image_input, edit_prompt, edit_show_thinking,
edit_cfg_text_scale, edit_cfg_img_scale, edit_cfg_interval,
edit_timestep_shift, edit_num_timesteps,
edit_cfg_renorm_min, edit_cfg_renorm_type,
edit_max_think_token_n, edit_do_sample, edit_text_temperature, edit_seed
],
outputs=[edit_image_output, edit_thinking_output]
)
with gr.Tab("πΌοΈ Image Understanding"):
with gr.Row():
with gr.Column(scale=1):
img_input = gr.Image(label="Input Image", value=load_example_image('test_images/meme.jpg'))
understand_prompt = gr.Textbox(
label="Prompt",
value="Can someone explain what's funny about this meme??"
)
with gr.Column(scale=1):
txt_output = gr.Textbox(label="Result", lines=20)
with gr.Row():
understand_show_thinking = gr.Checkbox(label="Thinking", value=False)
with gr.Accordion("Inference Hyperparameters", open=False):
with gr.Row():
understand_do_sample = gr.Checkbox(label="Sampling", value=False, info="Enable sampling for text generation")
understand_text_temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.3, step=0.05, interactive=True,
label="Temperature", info="Controls randomness in text generation (0=deterministic, 1=creative)")
understand_max_new_tokens = gr.Slider(minimum=64, maximum=4096, value=512, step=64, interactive=True,
label="Max New Tokens", info="Maximum length of generated text, including potential thinking")
img_understand_btn = gr.Button("Submit", variant="primary")
gr.on(
triggers=[img_understand_btn.click, understand_prompt.submit],
fn=image_understanding,
inputs=[
img_input, understand_prompt, understand_show_thinking,
understand_do_sample, understand_text_temperature, understand_max_new_tokens
],
outputs=txt_output
)
demo.launch(share=True)
|