File size: 20,072 Bytes
670666f
 
3201606
 
b74f5b1
670666f
3201606
71139cc
3201606
 
 
 
 
670666f
71139cc
3201606
670666f
3201606
 
 
 
 
 
 
 
 
670666f
3201606
 
71139cc
3201606
 
 
 
 
71139cc
 
 
 
 
 
3201606
 
71139cc
3201606
71139cc
3201606
 
 
 
 
 
 
 
 
 
 
71139cc
 
 
3201606
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71139cc
 
 
 
3201606
 
bfea61c
71139cc
3201606
 
71139cc
3201606
 
670666f
b74f5b1
 
 
 
 
 
 
 
 
670666f
71139cc
3201606
 
 
 
 
 
 
 
670666f
3201606
 
 
 
 
 
71139cc
3201606
 
 
 
 
 
670666f
71139cc
 
3201606
 
71139cc
 
 
 
3201606
 
670666f
3201606
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71139cc
 
 
 
3201606
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71139cc
3201606
71139cc
3201606
 
 
 
 
 
 
 
 
 
 
 
 
 
71139cc
3201606
71139cc
 
 
3201606
 
71139cc
3201606
71139cc
3201606
 
 
71139cc
 
3201606
71139cc
3201606
 
 
71139cc
3201606
71139cc
3201606
 
 
 
 
 
71139cc
3201606
71139cc
3201606
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
670666f
3201606
 
 
 
 
 
 
 
 
 
 
 
71139cc
3201606
71139cc
3201606
 
 
71139cc
3201606
71139cc
3201606
 
 
71139cc
 
3201606
71139cc
3201606
 
 
71139cc
3201606
71139cc
3201606
 
 
 
 
 
71139cc
3201606
71139cc
3201606
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
670666f
3201606
 
 
 
 
 
 
670666f
3201606
 
 
 
 
 
 
 
 
 
 
71139cc
3201606
71139cc
3201606
 
 
 
 
 
 
 
 
 
 
 
670666f
b74f5b1
71139cc
b74f5b1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
import gradio as gr
import numpy as np
import os
import torch
import torch.quantization
import random
import subprocess
# Install flash-attn without CUDA extensions, which is suitable for CPU-only environments.
subprocess.run(
    "pip install flash-attn --no-build-isolation",
    env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
    shell=True,
)

from accelerate import load_checkpoint_and_dispatch, init_empty_weights
from PIL import Image

from data.data_utils import add_special_tokens, pil_img2rgb
from data.transforms import ImageTransform
from inferencer import InterleaveInferencer
from modeling.autoencoder import load_ae
from modeling.bagel import (
    BagelConfig, Bagel, Qwen2Config, Qwen2ForCausalLM,
    SiglipVisionConfig, SiglipVisionModel
)
from modeling.qwen2 import Qwen2Tokenizer

from huggingface_hub import snapshot_download

# --- Model Download ---
save_dir = "./model_weights"
repo_id = "Wayne-King/SRUM_BAGEL_7B_MoT"
cache_dir = save_dir + "/cache"

snapshot_download(
    cache_dir=cache_dir,
    local_dir=save_dir,
    repo_id=repo_id,
    local_dir_use_symlinks=False,
    resume_download=True,
    allow_patterns=["*.json", "*.safetensors", "*.bin", "*.py", "*.md", "*.txt"],
)

# --- Model Initialization ---
model_path = save_dir
device = "cpu" # Set device to CPU

llm_config = Qwen2Config.from_json_file(os.path.join(model_path, "llm_config.json"))
llm_config.qk_norm = True
llm_config.tie_word_embeddings = False
llm_config.layer_module = "Qwen2MoTDecoderLayer"

vit_config = SiglipVisionConfig.from_json_file(os.path.join(model_path, "vit_config.json"))
vit_config.rope = False
vit_config.num_hidden_layers -= 1

vae_model, vae_config = load_ae(local_path=os.path.join(model_path, "ae.safetensors"))
# Move VAE model to CPU
vae_model.to(device)


config = BagelConfig(
    visual_gen=True,
    visual_und=True,
    llm_config=llm_config, 
    vit_config=vit_config,
    vae_config=vae_config,
    vit_max_num_patch_per_side=70,
    connector_act='gelu_pytorch_tanh',
    latent_patch_size=2,
    max_latent_size=64,
)

with init_empty_weights():
    language_model = Qwen2ForCausalLM(llm_config)
    vit_model      = SiglipVisionModel(vit_config)
    model          = Bagel(language_model, vit_model, config)
    model.vit_model.vision_model.embeddings.convert_conv2d_to_linear(vit_config, meta=True)

tokenizer = Qwen2Tokenizer.from_pretrained(model_path)
tokenizer, new_token_ids, _ = add_special_tokens(tokenizer)

vae_transform = ImageTransform(1024, 512, 16)
vit_transform = ImageTransform(980, 224, 14)

# --- Model Loading for CPU ---
# Removed multi-GPU device mapping logic.
# We will load the entire model onto the CPU.
# Using float32 for better CPU compatibility instead of bfloat16.
model = load_checkpoint_and_dispatch(
    model,
    checkpoint=os.path.join(model_path, "model.safetensors"),
    device_map={"":"cpu"}, # Map all model parts to CPU
    offload_buffers=True,
    offload_folder="offload",
    dtype=torch.float32, # Use float32 for CPU
    force_hooks=True,
).eval()

# --- INT8 Quantization ---
# Apply dynamic quantization to the language model component for CPU optimization.
# This converts the linear layer weights to int8, reducing memory and speeding up inference.
print("Applying INT8 dynamic quantization to the language model...")
model.language_model = torch.quantization.quantize_dynamic(
    model.language_model, {torch.nn.Linear}, dtype=torch.qint8
)
print("Quantization complete.")


# --- Inferencer Preparing ---
inferencer = InterleaveInferencer(
    model=model,
    vae_model=vae_model,
    tokenizer=tokenizer,
    vae_transform=vae_transform,
    vit_transform=vit_transform,
    new_token_ids=new_token_ids,
)

def set_seed(seed):
    """Set random seeds for reproducibility"""
    if seed > 0:
        random.seed(seed)
        np.random.seed(seed)
        torch.manual_seed(seed)
        # Conditional check for CUDA availability (will be false in CPU-only)
        if torch.cuda.is_available():
            torch.cuda.manual_seed(seed)
            torch.cuda.manual_seed_all(seed)
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = False
    return seed

# --- Inference Functions (GPU Decorators Removed) ---

# Text to Image function with thinking option and hyperparameters
def text_to_image(prompt, show_thinking=False, cfg_text_scale=4.0, cfg_interval=0.4, 
                  timestep_shift=3.0, num_timesteps=50, 
                  cfg_renorm_min=1.0, cfg_renorm_type="global", 
                  max_think_token_n=1024, do_sample=False, text_temperature=0.3,
                  seed=0, image_ratio="1:1"):
    # Set seed for reproducibility
    set_seed(seed)

    if image_ratio == "1:1":
        image_shapes = (1024, 1024)
    elif image_ratio == "4:3":
        image_shapes = (768, 1024)
    elif image_ratio == "3:4":
        image_shapes = (1024, 768) 
    elif image_ratio == "16:9":
        image_shapes = (576, 1024)
    elif image_ratio == "9:16":
        image_shapes = (1024, 576) 
    
    # Set hyperparameters
    inference_hyper = dict(
        max_think_token_n=max_think_token_n if show_thinking else 1024,
        do_sample=do_sample if show_thinking else False,
        text_temperature=text_temperature if show_thinking else 0.3,
        cfg_text_scale=cfg_text_scale,
        cfg_interval=[cfg_interval, 1.0],  # End fixed at 1.0
        timestep_shift=timestep_shift,
        num_timesteps=num_timesteps,
        cfg_renorm_min=cfg_renorm_min,
        cfg_renorm_type=cfg_renorm_type,
        image_shapes=image_shapes,
    )

    result = {"text": "", "image": None}
    # Call inferencer with or without think parameter based on user choice
    for i in inferencer(text=prompt, think=show_thinking, understanding_output=False, **inference_hyper):
        if type(i) == str:
            result["text"] += i
        else:
            result["image"] = i

        yield result["image"], result.get("text", None)


# Image Understanding function with thinking option and hyperparameters
def image_understanding(image: Image.Image, prompt: str, show_thinking=False, 
                        do_sample=False, text_temperature=0.3, max_new_tokens=512):
    if image is None:
        return "Please upload an image."

    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)

    image = pil_img2rgb(image)
    
    # Set hyperparameters
    inference_hyper = dict(
        do_sample=do_sample,
        text_temperature=text_temperature,
        max_think_token_n=max_new_tokens, # Set max_length
    )
    
    result = {"text": "", "image": None}
    # Use show_thinking parameter to control thinking process
    for i in inferencer(image=image, text=prompt, think=show_thinking, 
                        understanding_output=True, **inference_hyper):
        if type(i) == str:
            result["text"] += i
        else:
            result["image"] = i
        yield result["text"]


# Image Editing function with thinking option and hyperparameters
def edit_image(image: Image.Image, prompt: str, show_thinking=False, cfg_text_scale=4.0, 
               cfg_img_scale=2.0, cfg_interval=0.0, 
               timestep_shift=3.0, num_timesteps=50, cfg_renorm_min=1.0, 
               cfg_renorm_type="text_channel", max_think_token_n=1024, 
               do_sample=False, text_temperature=0.3, seed=0):
    # Set seed for reproducibility
    set_seed(seed)
    
    if image is None:
        return "Please upload an image.", ""

    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)

    image = pil_img2rgb(image)
    
    # Set hyperparameters
    inference_hyper = dict(
        max_think_token_n=max_think_token_n if show_thinking else 1024,
        do_sample=do_sample if show_thinking else False,
        text_temperature=text_temperature if show_thinking else 0.3,
        cfg_text_scale=cfg_text_scale,
        cfg_img_scale=cfg_img_scale,
        cfg_interval=[cfg_interval, 1.0],  # End fixed at 1.0
        timestep_shift=timestep_shift,
        num_timesteps=num_timesteps,
        cfg_renorm_min=cfg_renorm_min,
        cfg_renorm_type=cfg_renorm_type,
    )
    
    # Include thinking parameter based on user choice
    result = {"text": "", "image": None}
    for i in inferencer(image=image, text=prompt, think=show_thinking, understanding_output=False, **inference_hyper):
        if type(i) == str:
            result["text"] += i
        else:
            result["image"] = i

        yield result["image"], result.get("text", "")

# Helper function to load example images
def load_example_image(image_path):
    try:
        return Image.open(image_path)
    except Exception as e:
        print(f"Error loading example image: {e}")
        return None


# --- Gradio UI (Unchanged) ---
with gr.Blocks() as demo:
    gr.Markdown("# πŸ₯― [BAGEL](https://bagel-ai.org/) - CPU Version")

    with gr.Tab("πŸ“ Text to Image"):
        txt_input = gr.Textbox(
            label="Prompt", 
            value="A female cosplayer portraying an ethereal fairy or elf, wearing a flowing dress made of delicate fabrics in soft, mystical colors like emerald green and silver. She has pointed ears, a gentle, enchanting expression, and her outfit is adorned with sparkling jewels and intricate patterns. The background is a magical forest with glowing plants, mystical creatures, and a serene atmosphere."
        )
        
        with gr.Row():
            show_thinking = gr.Checkbox(label="Thinking", value=False)
        
        with gr.Accordion("Inference Hyperparameters", open=False):
            with gr.Group():
                with gr.Row():
                    seed = gr.Slider(minimum=0, maximum=1000000, value=0, step=1, 
                                     label="Seed", info="0 for random seed, positive for reproducible results")
                    image_ratio = gr.Dropdown(choices=["1:1", "4:3", "3:4", "16:9", "9:16"], 
                                              value="1:1", label="Image Ratio", 
                                              info="The longer size is fixed to 1024")
                
                with gr.Row():
                    cfg_text_scale = gr.Slider(minimum=1.0, maximum=8.0, value=4.0, step=0.1, interactive=True,
                                               label="CFG Text Scale", info="Controls how strongly the model follows the text prompt (4.0-8.0)")
                    cfg_interval = gr.Slider(minimum=0.0, maximum=1.0, value=0.4, step=0.1, 
                                             label="CFG Interval", info="Start of CFG application interval (end is fixed at 1.0)")
                
                with gr.Row():
                    cfg_renorm_type = gr.Dropdown(choices=["global", "local", "text_channel"], 
                                                  value="global", label="CFG Renorm Type", 
                                                  info="If the genrated image is blurry, use 'global'")
                    cfg_renorm_min = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.1, interactive=True,
                                               label="CFG Renorm Min", info="1.0 disables CFG-Renorm")
                
                with gr.Row():
                    num_timesteps = gr.Slider(minimum=10, maximum=100, value=50, step=5, interactive=True,
                                              label="Timesteps", info="Total denoising steps")
                    timestep_shift = gr.Slider(minimum=1.0, maximum=5.0, value=3.0, step=0.5, interactive=True,
                                               label="Timestep Shift", info="Higher values for layout, lower for details")
                
                thinking_params = gr.Group(visible=False)
                with thinking_params:
                    with gr.Row():
                        do_sample = gr.Checkbox(label="Sampling", value=False, info="Enable sampling for text generation")
                        max_think_token_n = gr.Slider(minimum=64, maximum=4006, value=1024, step=64, interactive=True,
                                                      label="Max Think Tokens", info="Maximum number of tokens for thinking")
                        text_temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.3, step=0.1, interactive=True,
                                                     label="Temperature", info="Controls randomness in text generation")
        
        thinking_output = gr.Textbox(label="Thinking Process", visible=False)
        img_output = gr.Image(label="Generated Image")
        gen_btn = gr.Button("Generate", variant="primary")
        
        def update_thinking_visibility(show):
            return gr.update(visible=show), gr.update(visible=show)
        
        show_thinking.change(
            fn=update_thinking_visibility,
            inputs=[show_thinking],
            outputs=[thinking_output, thinking_params]
        )
        
        gr.on(
            triggers=[gen_btn.click, txt_input.submit],
            fn=text_to_image,
            inputs=[
                txt_input, show_thinking, cfg_text_scale, 
                cfg_interval, timestep_shift, 
                num_timesteps, cfg_renorm_min, cfg_renorm_type,
                max_think_token_n, do_sample, text_temperature, seed, image_ratio
            ],
            outputs=[img_output, thinking_output]
        )

    with gr.Tab("πŸ–ŒοΈ Image Edit"):
        with gr.Row():
            with gr.Column(scale=1):
                edit_image_input = gr.Image(label="Input Image", value=load_example_image('test_images/women.jpg'))
                edit_prompt = gr.Textbox(
                    label="Prompt",
                    value="She boards a modern subway, quietly reading a folded newspaper, wearing the same clothes."
                )
            
            with gr.Column(scale=1):
                edit_image_output = gr.Image(label="Result")
                edit_thinking_output = gr.Textbox(label="Thinking Process", visible=False)
        
        with gr.Row():
            edit_show_thinking = gr.Checkbox(label="Thinking", value=False)
        
        with gr.Accordion("Inference Hyperparameters", open=False):
            with gr.Group():
                with gr.Row():
                    edit_seed = gr.Slider(minimum=0, maximum=1000000, value=0, step=1, interactive=True,
                                          label="Seed", info="0 for random seed, positive for reproducible results")
                    edit_cfg_text_scale = gr.Slider(minimum=1.0, maximum=8.0, value=4.0, step=0.1, interactive=True,
                                                    label="CFG Text Scale", info="Controls how strongly the model follows the text prompt")
                
                with gr.Row():
                    edit_cfg_img_scale = gr.Slider(minimum=1.0, maximum=4.0, value=2.0, step=0.1, interactive=True,
                                                   label="CFG Image Scale", info="Controls how much the model preserves input image details")
                    edit_cfg_interval = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.1, interactive=True,
                                                  label="CFG Interval", info="Start of CFG application interval (end is fixed at 1.0)")
                    
                with gr.Row():
                    edit_cfg_renorm_type = gr.Dropdown(choices=["global", "local", "text_channel"], 
                                                       value="text_channel", label="CFG Renorm Type", 
                                                       info="If the genrated image is blurry, use 'global")
                    edit_cfg_renorm_min = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.1, interactive=True,
                                                    label="CFG Renorm Min", info="1.0 disables CFG-Renorm")
                
                with gr.Row():
                    edit_num_timesteps = gr.Slider(minimum=10, maximum=100, value=50, step=5, interactive=True,
                                                   label="Timesteps", info="Total denoising steps")
                    edit_timestep_shift = gr.Slider(minimum=1.0, maximum=10.0, value=3.0, step=0.5, interactive=True,
                                                    label="Timestep Shift", info="Higher values for layout, lower for details")
                
                edit_thinking_params = gr.Group(visible=False)
                with edit_thinking_params:
                    with gr.Row():
                        edit_do_sample = gr.Checkbox(label="Sampling", value=False, info="Enable sampling for text generation")
                        edit_max_think_token_n = gr.Slider(minimum=64, maximum=4006, value=1024, step=64, interactive=True,
                                                           label="Max Think Tokens", info="Maximum number of tokens for thinking")
                        edit_text_temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.3, step=0.1, interactive=True,
                                                          label="Temperature", info="Controls randomness in text generation")
        
        edit_btn = gr.Button("Submit", variant="primary")
        
        def update_edit_thinking_visibility(show):
            return gr.update(visible=show), gr.update(visible=show)
        
        edit_show_thinking.change(
            fn=update_edit_thinking_visibility,
            inputs=[edit_show_thinking],
            outputs=[edit_thinking_output, edit_thinking_params]
        )
        
        gr.on(
            triggers=[edit_btn.click, edit_prompt.submit],
            fn=edit_image,
            inputs=[
                edit_image_input, edit_prompt, edit_show_thinking, 
                edit_cfg_text_scale, edit_cfg_img_scale, edit_cfg_interval,
                edit_timestep_shift, edit_num_timesteps, 
                edit_cfg_renorm_min, edit_cfg_renorm_type,
                edit_max_think_token_n, edit_do_sample, edit_text_temperature, edit_seed
            ],
            outputs=[edit_image_output, edit_thinking_output]
        )

    with gr.Tab("πŸ–ΌοΈ Image Understanding"):
        with gr.Row():
            with gr.Column(scale=1):
                img_input = gr.Image(label="Input Image", value=load_example_image('test_images/meme.jpg'))
                understand_prompt = gr.Textbox(
                    label="Prompt", 
                    value="Can someone explain what's funny about this meme??"
                )
            
            with gr.Column(scale=1):
                txt_output = gr.Textbox(label="Result", lines=20)
        
        with gr.Row():
            understand_show_thinking = gr.Checkbox(label="Thinking", value=False)
        
        with gr.Accordion("Inference Hyperparameters", open=False):
            with gr.Row():
                understand_do_sample = gr.Checkbox(label="Sampling", value=False, info="Enable sampling for text generation")
                understand_text_temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.3, step=0.05, interactive=True,
                                                        label="Temperature", info="Controls randomness in text generation (0=deterministic, 1=creative)")
                understand_max_new_tokens = gr.Slider(minimum=64, maximum=4096, value=512, step=64, interactive=True,
                                                      label="Max New Tokens", info="Maximum length of generated text, including potential thinking")
        
        img_understand_btn = gr.Button("Submit", variant="primary")
        
        gr.on(
            triggers=[img_understand_btn.click, understand_prompt.submit],
            fn=image_understanding,
            inputs=[
                img_input, understand_prompt, understand_show_thinking,
                understand_do_sample, understand_text_temperature, understand_max_new_tokens
            ],
            outputs=txt_output
        )


demo.launch(share=True)