Spaces:
Sleeping
Sleeping
Update app.py
Browse filesswitched from vllm to tensorflow
app.py
CHANGED
|
@@ -1,106 +1,110 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import
|
|
|
|
| 3 |
import re
|
| 4 |
import time
|
| 5 |
-
from vllm import LLM, SamplingParams
|
| 6 |
|
| 7 |
-
|
| 8 |
-
os.environ['VLLM_ATTENTION_BACKEND'] = 'XFORMERS'
|
| 9 |
-
os.environ['VLLM_USE_TRITON_FLASH_ATTN'] = '0'
|
| 10 |
-
|
| 11 |
-
class VibeThinkerVLLM:
|
| 12 |
def __init__(self):
|
| 13 |
self.model = None
|
|
|
|
|
|
|
| 14 |
self.load_model()
|
| 15 |
|
| 16 |
def load_model(self):
|
| 17 |
-
"""Load VibeThinker model with
|
| 18 |
try:
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
|
|
|
|
|
|
| 28 |
trust_remote_code=True
|
| 29 |
)
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
| 31 |
except Exception as e:
|
| 32 |
print(f"β Error loading model: {e}")
|
| 33 |
raise
|
| 34 |
|
| 35 |
-
def generate_response(self, prompt, temperature=0.6,
|
| 36 |
"""
|
| 37 |
-
Generate response with thinking length control
|
| 38 |
|
| 39 |
Args:
|
| 40 |
prompt: Input prompt
|
| 41 |
temperature: Sampling temperature
|
| 42 |
-
|
| 43 |
-
max_thinking_tokens:
|
| 44 |
"""
|
| 45 |
-
if not self.model:
|
| 46 |
return "Model not loaded!", 0, 0, 0
|
| 47 |
|
| 48 |
try:
|
| 49 |
start_time = time.time()
|
| 50 |
|
| 51 |
-
#
|
| 52 |
-
sampling_params = SamplingParams(
|
| 53 |
-
temperature=temperature,
|
| 54 |
-
top_p=0.95,
|
| 55 |
-
top_k=-1,
|
| 56 |
-
max_tokens=max_tokens,
|
| 57 |
-
# Stop sequences to prevent infinite loops
|
| 58 |
-
stop=[
|
| 59 |
-
"Wait, the problem says", # Common loop pattern
|
| 60 |
-
"\n\n\n\n", # Multiple blank lines
|
| 61 |
-
"###END###", # Custom stop token
|
| 62 |
-
],
|
| 63 |
-
repetition_penalty=1.1, # Penalize repetition
|
| 64 |
-
)
|
| 65 |
-
|
| 66 |
-
# Format prompt clearly for competitive coding
|
| 67 |
formatted_prompt = f"""<|im_start|>system
|
| 68 |
You are a competitive programming expert. Provide clear, concise solutions to coding problems.
|
| 69 |
|
| 70 |
Format your response as:
|
| 71 |
-
1. Brief analysis (2-3 sentences
|
| 72 |
2. Solution approach
|
| 73 |
3. Implementation code
|
| 74 |
4. Test cases
|
| 75 |
|
| 76 |
-
Keep reasoning under {max_thinking_tokens} tokens.
|
| 77 |
<|im_start|>user
|
| 78 |
{prompt}<|im_end|>
|
| 79 |
<|im_start|>assistant
|
| 80 |
"""
|
| 81 |
-
|
| 82 |
-
# Generate with vLLM
|
| 83 |
-
outputs = self.model.generate([formatted_prompt], sampling_params)
|
| 84 |
|
| 85 |
-
|
|
|
|
|
|
|
| 86 |
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
else:
|
| 102 |
-
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
except Exception as e:
|
| 105 |
return f"Error during generation: {str(e)}", 0, 0, 0
|
| 106 |
|
|
@@ -112,6 +116,8 @@ Keep reasoning under {max_thinking_tokens} tokens. DO NOT repeat yourself.<|im_e
|
|
| 112 |
|
| 113 |
# Check if same phrase repeats 3+ times
|
| 114 |
for length in [10, 15, 20]:
|
|
|
|
|
|
|
| 115 |
for i in range(len(words) - length * 3):
|
| 116 |
phrase = ' '.join(words[i:i+length])
|
| 117 |
rest = ' '.join(words[i+length:])
|
|
@@ -123,6 +129,8 @@ Keep reasoning under {max_thinking_tokens} tokens. DO NOT repeat yourself.<|im_e
|
|
| 123 |
"""Truncate text at the start of detected loop"""
|
| 124 |
words = text.split()
|
| 125 |
for length in [10, 15, 20]:
|
|
|
|
|
|
|
| 126 |
for i in range(len(words) - length * 2):
|
| 127 |
phrase = ' '.join(words[i:i+length])
|
| 128 |
rest_start = i + length
|
|
@@ -135,12 +143,11 @@ def parse_model_output(text):
|
|
| 135 |
"""
|
| 136 |
Parse model output to separate thinking and final answer
|
| 137 |
ONLY extract code from the final answer section, not from thinking
|
| 138 |
-
Returns: (thinking_content, answer_content, code_blocks)
|
| 139 |
"""
|
| 140 |
loop_warning = ""
|
| 141 |
-
if "[
|
| 142 |
loop_warning = "\n\nβ οΈ **Note**: Repetitive content was detected and removed"
|
| 143 |
-
text = text.replace("β οΈ *[
|
| 144 |
|
| 145 |
# Try to find explicit thinking delimiters
|
| 146 |
thinking_patterns = [
|
|
@@ -159,7 +166,6 @@ def parse_model_output(text):
|
|
| 159 |
break
|
| 160 |
|
| 161 |
# If no explicit thinking tags, try to detect reasoning section
|
| 162 |
-
# Look for a natural break like "Solution:" or "Here's the code:"
|
| 163 |
if not thinking_content:
|
| 164 |
split_markers = [
|
| 165 |
r'(.*?)(?=\n\n(?:Solution|Here\'s|Implementation|Code|Final).*?:)',
|
|
@@ -170,7 +176,6 @@ def parse_model_output(text):
|
|
| 170 |
match = re.search(pattern, text, re.DOTALL | re.IGNORECASE)
|
| 171 |
if match:
|
| 172 |
potential_thinking = match.group(1).strip()
|
| 173 |
-
# Only treat as thinking if it's substantial (>100 chars) and contains reasoning keywords
|
| 174 |
if len(potential_thinking) > 100:
|
| 175 |
thinking_lower = potential_thinking.lower()
|
| 176 |
if any(word in thinking_lower for word in ['step', 'approach', 'idea', 'first', 'we can', 'let\'s']):
|
|
@@ -178,11 +183,11 @@ def parse_model_output(text):
|
|
| 178 |
answer_content = text[len(potential_thinking):].strip()
|
| 179 |
break
|
| 180 |
|
| 181 |
-
#
|
| 182 |
code_pattern = r'```(\w+)?\n(.*?)```'
|
| 183 |
code_blocks = re.findall(code_pattern, answer_content, re.DOTALL)
|
| 184 |
|
| 185 |
-
# Extract final answer
|
| 186 |
answer_match = re.search(r'\\boxed\{([^}]+)\}', answer_content)
|
| 187 |
if answer_match:
|
| 188 |
final_answer = f"**Final Answer:** {answer_match.group(1)}"
|
|
@@ -194,23 +199,20 @@ def parse_model_output(text):
|
|
| 194 |
return thinking_content, final_answer, code_blocks
|
| 195 |
|
| 196 |
def format_output_html(thinking, answer, code_blocks, prompt_tokens, completion_tokens, generation_time):
|
| 197 |
-
"""
|
| 198 |
-
Format output as styled HTML - thinking is plain text, code blocks are from final answer only
|
| 199 |
-
"""
|
| 200 |
total_tokens = prompt_tokens + completion_tokens
|
| 201 |
thinking_tokens_est = len(thinking.split()) * 1.3 if thinking else 0
|
| 202 |
tokens_per_sec = completion_tokens / generation_time if generation_time > 0 else 0
|
| 203 |
|
| 204 |
-
# Build thinking section HTML -
|
| 205 |
thinking_html = ""
|
| 206 |
if thinking:
|
| 207 |
-
# Escape any HTML in thinking to prevent rendering
|
| 208 |
thinking_escaped = thinking.replace('<', '<').replace('>', '>')
|
| 209 |
thinking_html = f"""
|
| 210 |
<details style="background: #f8f9fa; border: 2px solid #e9ecef; border-radius: 12px; padding: 20px; margin-bottom: 24px; box-shadow: 0 2px 4px rgba(0,0,0,0.05);">
|
| 211 |
<summary style="cursor: pointer; font-weight: 600; font-size: 16px; color: #495057; user-select: none; display: flex; align-items: center; gap: 8px;">
|
| 212 |
<span style="font-size: 20px;">π§ </span>
|
| 213 |
-
<span>Reasoning Process ({int(thinking_tokens_est):,} tokens)</span>
|
| 214 |
<span style="margin-left: auto; font-size: 12px; color: #6c757d;">Click to expand/collapse</span>
|
| 215 |
</summary>
|
| 216 |
<div style="margin-top: 16px; padding-top: 16px; border-top: 1px solid #dee2e6; color: #212529; line-height: 1.7; white-space: pre-wrap; font-size: 14px; font-family: 'SF Mono', Monaco, Consolas, monospace; background: #ffffff; padding: 16px; border-radius: 8px;">
|
|
@@ -219,15 +221,13 @@ def format_output_html(thinking, answer, code_blocks, prompt_tokens, completion_
|
|
| 219 |
</details>
|
| 220 |
"""
|
| 221 |
|
| 222 |
-
# Build code blocks HTML
|
| 223 |
code_html = ""
|
| 224 |
if code_blocks:
|
| 225 |
code_blocks_html = ""
|
| 226 |
for idx, (lang, code) in enumerate(code_blocks):
|
| 227 |
lang_display = lang if lang else "code"
|
| 228 |
code_id = f"code_{idx}"
|
| 229 |
-
|
| 230 |
-
# Create downloadable version
|
| 231 |
code_clean = code.strip()
|
| 232 |
|
| 233 |
code_blocks_html += f"""
|
|
@@ -264,16 +264,9 @@ def format_output_html(thinking, answer, code_blocks, prompt_tokens, completion_
|
|
| 264 |
<script>
|
| 265 |
function downloadCode(code, lang) {{
|
| 266 |
const extensions = {{
|
| 267 |
-
'python': 'py',
|
| 268 |
-
'
|
| 269 |
-
'
|
| 270 |
-
'cpp': 'cpp',
|
| 271 |
-
'c': 'c',
|
| 272 |
-
'html': 'html',
|
| 273 |
-
'css': 'css',
|
| 274 |
-
'typescript': 'ts',
|
| 275 |
-
'rust': 'rs',
|
| 276 |
-
'go': 'go',
|
| 277 |
}};
|
| 278 |
const ext = extensions[lang.toLowerCase()] || 'txt';
|
| 279 |
const filename = `solution.${{ext}}`;
|
|
@@ -294,7 +287,7 @@ def format_output_html(thinking, answer, code_blocks, prompt_tokens, completion_
|
|
| 294 |
html = f"""
|
| 295 |
<div style="font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; max-width: 100%; margin: 0 auto; background: #ffffff; color: #1a1a1a;">
|
| 296 |
|
| 297 |
-
<!--
|
| 298 |
<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); padding: 20px; border-radius: 12px; margin-bottom: 24px; color: white; box-shadow: 0 4px 6px rgba(0,0,0,0.1);">
|
| 299 |
<h3 style="margin: 0 0 12px 0; font-size: 18px; font-weight: 600;">π Generation Stats</h3>
|
| 300 |
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(140px, 1fr)); gap: 12px; font-size: 14px;">
|
|
@@ -304,7 +297,7 @@ def format_output_html(thinking, answer, code_blocks, prompt_tokens, completion_
|
|
| 304 |
</div>
|
| 305 |
<div style="background: rgba(255,255,255,0.2); padding: 12px; border-radius: 8px;">
|
| 306 |
<div style="opacity: 0.9; font-size: 12px; margin-bottom: 4px;">Speed</div>
|
| 307 |
-
<div style="font-size: 20px; font-weight: bold;">{tokens_per_sec:.
|
| 308 |
</div>
|
| 309 |
<div style="background: rgba(255,255,255,0.2); padding: 12px; border-radius: 8px;">
|
| 310 |
<div style="opacity: 0.9; font-size: 12px; margin-bottom: 4px;">Prompt</div>
|
|
@@ -316,7 +309,7 @@ def format_output_html(thinking, answer, code_blocks, prompt_tokens, completion_
|
|
| 316 |
</div>
|
| 317 |
<div style="background: rgba(255,255,255,0.2); padding: 12px; border-radius: 8px;">
|
| 318 |
<div style="opacity: 0.9; font-size: 12px; margin-bottom: 4px;">Thinking</div>
|
| 319 |
-
<div style="font-size: 20px; font-weight: bold;"
|
| 320 |
</div>
|
| 321 |
<div style="background: rgba(255,255,255,0.2); padding: 12px; border-radius: 8px;">
|
| 322 |
<div style="opacity: 0.9; font-size: 12px; margin-bottom: 4px;">Total</div>
|
|
@@ -325,10 +318,9 @@ def format_output_html(thinking, answer, code_blocks, prompt_tokens, completion_
|
|
| 325 |
</div>
|
| 326 |
</div>
|
| 327 |
|
| 328 |
-
<!-- Thinking Section (Plain Text Only) -->
|
| 329 |
{thinking_html}
|
| 330 |
|
| 331 |
-
<!-- Answer
|
| 332 |
<div style="background: #ffffff; border: 2px solid #28a745; border-radius: 12px; padding: 24px; margin-bottom: 24px; box-shadow: 0 2px 4px rgba(40,167,69,0.1);">
|
| 333 |
<h3 style="margin: 0 0 16px 0; color: #28a745; font-size: 18px; font-weight: 600; display: flex; align-items: center; gap: 8px;">
|
| 334 |
<span style="font-size: 22px;">β
</span> Final Solution
|
|
@@ -338,7 +330,6 @@ def format_output_html(thinking, answer, code_blocks, prompt_tokens, completion_
|
|
| 338 |
</div>
|
| 339 |
</div>
|
| 340 |
|
| 341 |
-
<!-- Code Blocks (From Final Answer Only) -->
|
| 342 |
{code_html}
|
| 343 |
|
| 344 |
</div>
|
|
@@ -346,54 +337,43 @@ def format_output_html(thinking, answer, code_blocks, prompt_tokens, completion_
|
|
| 346 |
return html
|
| 347 |
|
| 348 |
# Initialize model
|
| 349 |
-
print("π Initializing VibeThinker
|
| 350 |
-
vibe_model =
|
| 351 |
|
| 352 |
-
def generate_solution(prompt, temperature=0.6, max_tokens=
|
| 353 |
"""Generate and format solution with progress tracking"""
|
| 354 |
if not prompt.strip():
|
| 355 |
return "<p style='color: #dc3545; font-size: 16px; padding: 20px;'>β οΈ Please enter a problem to solve.</p>"
|
| 356 |
|
| 357 |
-
progress(0, desc="π Initializing
|
|
|
|
| 358 |
|
| 359 |
-
progress(0.3, desc="π§ Model is thinking...")
|
| 360 |
response, prompt_tokens, completion_tokens, gen_time = vibe_model.generate_response(
|
| 361 |
prompt,
|
| 362 |
temperature=temperature,
|
| 363 |
-
|
| 364 |
max_thinking_tokens=max_thinking_tokens
|
| 365 |
)
|
| 366 |
|
| 367 |
progress(0.8, desc="π Formatting output...")
|
| 368 |
|
| 369 |
-
# Parse output - thinking stays as plain text, code only from answer
|
| 370 |
thinking, answer, code_blocks = parse_model_output(response)
|
| 371 |
-
|
| 372 |
-
# Format as HTML
|
| 373 |
html_output = format_output_html(thinking, answer, code_blocks, prompt_tokens, completion_tokens, gen_time)
|
| 374 |
|
| 375 |
progress(1.0, desc="β
Complete!")
|
| 376 |
-
|
| 377 |
return html_output
|
| 378 |
|
| 379 |
# Create Gradio interface
|
| 380 |
with gr.Blocks(
|
| 381 |
-
theme=gr.themes.Soft(
|
| 382 |
-
|
| 383 |
-
secondary_hue="purple",
|
| 384 |
-
),
|
| 385 |
-
css="""
|
| 386 |
-
.gradio-container {
|
| 387 |
-
max-width: 1400px !important;
|
| 388 |
-
}
|
| 389 |
-
"""
|
| 390 |
) as demo:
|
| 391 |
gr.Markdown("""
|
| 392 |
# π§ VibeThinker-1.5B Competitive Coding Assistant
|
| 393 |
|
| 394 |
**Optimized for**: Competitive programming (LeetCode, Codeforces, AtCoder) and algorithm challenges
|
| 395 |
|
| 396 |
-
|
| 397 |
|
| 398 |
β οΈ **Note**: This model is specialized for competitive programming, not general software development
|
| 399 |
""")
|
|
@@ -408,48 +388,32 @@ with gr.Blocks(
|
|
| 408 |
|
| 409 |
with gr.Accordion("βοΈ Advanced Settings", open=False):
|
| 410 |
temperature_slider = gr.Slider(
|
| 411 |
-
minimum=0.0,
|
| 412 |
-
maximum=1.0,
|
| 413 |
-
value=0.6,
|
| 414 |
-
step=0.1,
|
| 415 |
label="π‘οΈ Temperature (0.6 recommended)"
|
| 416 |
)
|
| 417 |
max_tokens_slider = gr.Slider(
|
| 418 |
-
minimum=1024,
|
| 419 |
-
|
| 420 |
-
value=16384,
|
| 421 |
-
step=1024,
|
| 422 |
-
label="π Max Total Tokens (40K max)"
|
| 423 |
)
|
| 424 |
max_thinking_slider = gr.Slider(
|
| 425 |
-
minimum=512,
|
| 426 |
-
|
| 427 |
-
value=3072,
|
| 428 |
-
step=512,
|
| 429 |
-
label="π§ Max Thinking Tokens (Lower = faster, less verbose)"
|
| 430 |
)
|
| 431 |
|
| 432 |
gr.Markdown("""
|
| 433 |
**Tips:**
|
| 434 |
-
- Lower thinking tokens (1024-2048) for faster,
|
| 435 |
-
- Higher thinking tokens (4096-8192) for complex
|
| 436 |
- Temperature 0.6 balances creativity and accuracy
|
| 437 |
-
-
|
| 438 |
-
- Code blocks shown are from final solution only (not from reasoning process)
|
| 439 |
""")
|
| 440 |
|
| 441 |
generate_btn = gr.Button("π Generate Solution", variant="primary", size="lg")
|
| 442 |
clear_btn = gr.Button("ποΈ Clear", size="sm")
|
| 443 |
-
|
| 444 |
-
gr.Markdown("""
|
| 445 |
-
---
|
| 446 |
-
**Status**: Generation progress will appear above the output when running
|
| 447 |
-
""")
|
| 448 |
|
| 449 |
with gr.Column(scale=2):
|
| 450 |
output_html = gr.HTML(label="Solution")
|
| 451 |
|
| 452 |
-
# Button actions
|
| 453 |
generate_btn.click(
|
| 454 |
fn=generate_solution,
|
| 455 |
inputs=[prompt_input, temperature_slider, max_tokens_slider, max_thinking_slider],
|
|
@@ -458,11 +422,9 @@ with gr.Blocks(
|
|
| 458 |
|
| 459 |
clear_btn.click(
|
| 460 |
fn=lambda: ("", ""),
|
| 461 |
-
inputs=None,
|
| 462 |
outputs=[prompt_input, output_html]
|
| 463 |
)
|
| 464 |
|
| 465 |
-
# Example problems
|
| 466 |
gr.Examples(
|
| 467 |
examples=[
|
| 468 |
["Write a Python function to find the maximum sum of a contiguous subarray (Kadane's Algorithm). Include edge cases and test with array [-2,1,-3,4,-1,2,1,-5,4]"],
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
import re
|
| 5 |
import time
|
|
|
|
| 6 |
|
| 7 |
+
class VibeThinkerModel:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
def __init__(self):
|
| 9 |
self.model = None
|
| 10 |
+
self.tokenizer = None
|
| 11 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
self.load_model()
|
| 13 |
|
| 14 |
def load_model(self):
|
| 15 |
+
"""Load VibeThinker model with transformers"""
|
| 16 |
try:
|
| 17 |
+
print("π Loading VibeThinker-1.5B with transformers...")
|
| 18 |
+
|
| 19 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 20 |
+
"WeiboAI/VibeThinker-1.5B",
|
| 21 |
+
trust_remote_code=True
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 25 |
+
"WeiboAI/VibeThinker-1.5B",
|
| 26 |
+
torch_dtype=torch.float16,
|
| 27 |
+
device_map="auto",
|
| 28 |
trust_remote_code=True
|
| 29 |
)
|
| 30 |
+
|
| 31 |
+
print(f"β
Model loaded successfully on {self.device}")
|
| 32 |
+
print(f"πΎ Model memory: ~{self.model.get_memory_footprint() / 1e9:.2f} GB")
|
| 33 |
+
|
| 34 |
except Exception as e:
|
| 35 |
print(f"β Error loading model: {e}")
|
| 36 |
raise
|
| 37 |
|
| 38 |
+
def generate_response(self, prompt, temperature=0.6, max_new_tokens=8192, max_thinking_tokens=4096):
|
| 39 |
"""
|
| 40 |
+
Generate response with thinking length control
|
| 41 |
|
| 42 |
Args:
|
| 43 |
prompt: Input prompt
|
| 44 |
temperature: Sampling temperature
|
| 45 |
+
max_new_tokens: Maximum new tokens to generate
|
| 46 |
+
max_thinking_tokens: Hint for reasoning depth (used in prompt)
|
| 47 |
"""
|
| 48 |
+
if not self.model or not self.tokenizer:
|
| 49 |
return "Model not loaded!", 0, 0, 0
|
| 50 |
|
| 51 |
try:
|
| 52 |
start_time = time.time()
|
| 53 |
|
| 54 |
+
# Format prompt for competitive coding
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
formatted_prompt = f"""<|im_start|>system
|
| 56 |
You are a competitive programming expert. Provide clear, concise solutions to coding problems.
|
| 57 |
|
| 58 |
Format your response as:
|
| 59 |
+
1. Brief analysis (2-3 sentences)
|
| 60 |
2. Solution approach
|
| 61 |
3. Implementation code
|
| 62 |
4. Test cases
|
| 63 |
|
| 64 |
+
Keep reasoning under {max_thinking_tokens} tokens. Be direct and avoid repetition.<|im_end|>
|
| 65 |
<|im_start|>user
|
| 66 |
{prompt}<|im_end|>
|
| 67 |
<|im_start|>assistant
|
| 68 |
"""
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
+
# Tokenize input
|
| 71 |
+
inputs = self.tokenizer(formatted_prompt, return_tensors="pt").to(self.device)
|
| 72 |
+
prompt_length = inputs.input_ids.shape[1]
|
| 73 |
|
| 74 |
+
# Generate with appropriate parameters
|
| 75 |
+
with torch.no_grad():
|
| 76 |
+
outputs = self.model.generate(
|
| 77 |
+
**inputs,
|
| 78 |
+
max_new_tokens=max_new_tokens,
|
| 79 |
+
temperature=temperature,
|
| 80 |
+
top_p=0.95,
|
| 81 |
+
top_k=50,
|
| 82 |
+
do_sample=True,
|
| 83 |
+
repetition_penalty=1.1,
|
| 84 |
+
pad_token_id=self.tokenizer.eos_token_id,
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
# Decode output
|
| 88 |
+
full_output = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 89 |
+
|
| 90 |
+
# Extract only the assistant's response
|
| 91 |
+
if "<|im_start|>assistant" in full_output:
|
| 92 |
+
generated_text = full_output.split("<|im_start|>assistant")[-1].strip()
|
| 93 |
else:
|
| 94 |
+
generated_text = full_output[len(formatted_prompt):].strip()
|
| 95 |
+
|
| 96 |
+
# Check for loops and truncate if needed
|
| 97 |
+
if self._detect_loop(generated_text):
|
| 98 |
+
generated_text = self._truncate_loop(generated_text)
|
| 99 |
+
generated_text += "\n\nβ οΈ *[Repetitive content detected and truncated]*"
|
| 100 |
+
|
| 101 |
+
generation_time = time.time() - start_time
|
| 102 |
+
|
| 103 |
+
# Calculate token counts
|
| 104 |
+
completion_length = outputs.shape[1] - prompt_length
|
| 105 |
+
|
| 106 |
+
return generated_text, prompt_length, completion_length, generation_time
|
| 107 |
+
|
| 108 |
except Exception as e:
|
| 109 |
return f"Error during generation: {str(e)}", 0, 0, 0
|
| 110 |
|
|
|
|
| 116 |
|
| 117 |
# Check if same phrase repeats 3+ times
|
| 118 |
for length in [10, 15, 20]:
|
| 119 |
+
if len(words) < length * 3:
|
| 120 |
+
continue
|
| 121 |
for i in range(len(words) - length * 3):
|
| 122 |
phrase = ' '.join(words[i:i+length])
|
| 123 |
rest = ' '.join(words[i+length:])
|
|
|
|
| 129 |
"""Truncate text at the start of detected loop"""
|
| 130 |
words = text.split()
|
| 131 |
for length in [10, 15, 20]:
|
| 132 |
+
if len(words) < length * 2:
|
| 133 |
+
continue
|
| 134 |
for i in range(len(words) - length * 2):
|
| 135 |
phrase = ' '.join(words[i:i+length])
|
| 136 |
rest_start = i + length
|
|
|
|
| 143 |
"""
|
| 144 |
Parse model output to separate thinking and final answer
|
| 145 |
ONLY extract code from the final answer section, not from thinking
|
|
|
|
| 146 |
"""
|
| 147 |
loop_warning = ""
|
| 148 |
+
if "[Repetitive content detected and truncated]" in text:
|
| 149 |
loop_warning = "\n\nβ οΈ **Note**: Repetitive content was detected and removed"
|
| 150 |
+
text = text.replace("β οΈ *[Repetitive content detected and truncated]*", "")
|
| 151 |
|
| 152 |
# Try to find explicit thinking delimiters
|
| 153 |
thinking_patterns = [
|
|
|
|
| 166 |
break
|
| 167 |
|
| 168 |
# If no explicit thinking tags, try to detect reasoning section
|
|
|
|
| 169 |
if not thinking_content:
|
| 170 |
split_markers = [
|
| 171 |
r'(.*?)(?=\n\n(?:Solution|Here\'s|Implementation|Code|Final).*?:)',
|
|
|
|
| 176 |
match = re.search(pattern, text, re.DOTALL | re.IGNORECASE)
|
| 177 |
if match:
|
| 178 |
potential_thinking = match.group(1).strip()
|
|
|
|
| 179 |
if len(potential_thinking) > 100:
|
| 180 |
thinking_lower = potential_thinking.lower()
|
| 181 |
if any(word in thinking_lower for word in ['step', 'approach', 'idea', 'first', 'we can', 'let\'s']):
|
|
|
|
| 183 |
answer_content = text[len(potential_thinking):].strip()
|
| 184 |
break
|
| 185 |
|
| 186 |
+
# Extract code blocks ONLY from answer_content
|
| 187 |
code_pattern = r'```(\w+)?\n(.*?)```'
|
| 188 |
code_blocks = re.findall(code_pattern, answer_content, re.DOTALL)
|
| 189 |
|
| 190 |
+
# Extract final answer
|
| 191 |
answer_match = re.search(r'\\boxed\{([^}]+)\}', answer_content)
|
| 192 |
if answer_match:
|
| 193 |
final_answer = f"**Final Answer:** {answer_match.group(1)}"
|
|
|
|
| 199 |
return thinking_content, final_answer, code_blocks
|
| 200 |
|
| 201 |
def format_output_html(thinking, answer, code_blocks, prompt_tokens, completion_tokens, generation_time):
|
| 202 |
+
"""Format output as styled HTML"""
|
|
|
|
|
|
|
| 203 |
total_tokens = prompt_tokens + completion_tokens
|
| 204 |
thinking_tokens_est = len(thinking.split()) * 1.3 if thinking else 0
|
| 205 |
tokens_per_sec = completion_tokens / generation_time if generation_time > 0 else 0
|
| 206 |
|
| 207 |
+
# Build thinking section HTML - plain text only
|
| 208 |
thinking_html = ""
|
| 209 |
if thinking:
|
|
|
|
| 210 |
thinking_escaped = thinking.replace('<', '<').replace('>', '>')
|
| 211 |
thinking_html = f"""
|
| 212 |
<details style="background: #f8f9fa; border: 2px solid #e9ecef; border-radius: 12px; padding: 20px; margin-bottom: 24px; box-shadow: 0 2px 4px rgba(0,0,0,0.05);">
|
| 213 |
<summary style="cursor: pointer; font-weight: 600; font-size: 16px; color: #495057; user-select: none; display: flex; align-items: center; gap: 8px;">
|
| 214 |
<span style="font-size: 20px;">π§ </span>
|
| 215 |
+
<span>Reasoning Process (~{int(thinking_tokens_est):,} tokens)</span>
|
| 216 |
<span style="margin-left: auto; font-size: 12px; color: #6c757d;">Click to expand/collapse</span>
|
| 217 |
</summary>
|
| 218 |
<div style="margin-top: 16px; padding-top: 16px; border-top: 1px solid #dee2e6; color: #212529; line-height: 1.7; white-space: pre-wrap; font-size: 14px; font-family: 'SF Mono', Monaco, Consolas, monospace; background: #ffffff; padding: 16px; border-radius: 8px;">
|
|
|
|
| 221 |
</details>
|
| 222 |
"""
|
| 223 |
|
| 224 |
+
# Build code blocks HTML
|
| 225 |
code_html = ""
|
| 226 |
if code_blocks:
|
| 227 |
code_blocks_html = ""
|
| 228 |
for idx, (lang, code) in enumerate(code_blocks):
|
| 229 |
lang_display = lang if lang else "code"
|
| 230 |
code_id = f"code_{idx}"
|
|
|
|
|
|
|
| 231 |
code_clean = code.strip()
|
| 232 |
|
| 233 |
code_blocks_html += f"""
|
|
|
|
| 264 |
<script>
|
| 265 |
function downloadCode(code, lang) {{
|
| 266 |
const extensions = {{
|
| 267 |
+
'python': 'py', 'javascript': 'js', 'java': 'java',
|
| 268 |
+
'cpp': 'cpp', 'c': 'c', 'html': 'html', 'css': 'css',
|
| 269 |
+
'typescript': 'ts', 'rust': 'rs', 'go': 'go',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 270 |
}};
|
| 271 |
const ext = extensions[lang.toLowerCase()] || 'txt';
|
| 272 |
const filename = `solution.${{ext}}`;
|
|
|
|
| 287 |
html = f"""
|
| 288 |
<div style="font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; max-width: 100%; margin: 0 auto; background: #ffffff; color: #1a1a1a;">
|
| 289 |
|
| 290 |
+
<!-- Stats -->
|
| 291 |
<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); padding: 20px; border-radius: 12px; margin-bottom: 24px; color: white; box-shadow: 0 4px 6px rgba(0,0,0,0.1);">
|
| 292 |
<h3 style="margin: 0 0 12px 0; font-size: 18px; font-weight: 600;">π Generation Stats</h3>
|
| 293 |
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(140px, 1fr)); gap: 12px; font-size: 14px;">
|
|
|
|
| 297 |
</div>
|
| 298 |
<div style="background: rgba(255,255,255,0.2); padding: 12px; border-radius: 8px;">
|
| 299 |
<div style="opacity: 0.9; font-size: 12px; margin-bottom: 4px;">Speed</div>
|
| 300 |
+
<div style="font-size: 20px; font-weight: bold;">{tokens_per_sec:.1f} t/s</div>
|
| 301 |
</div>
|
| 302 |
<div style="background: rgba(255,255,255,0.2); padding: 12px; border-radius: 8px;">
|
| 303 |
<div style="opacity: 0.9; font-size: 12px; margin-bottom: 4px;">Prompt</div>
|
|
|
|
| 309 |
</div>
|
| 310 |
<div style="background: rgba(255,255,255,0.2); padding: 12px; border-radius: 8px;">
|
| 311 |
<div style="opacity: 0.9; font-size: 12px; margin-bottom: 4px;">Thinking</div>
|
| 312 |
+
<div style="font-size: 20px; font-weight: bold;">~{int(thinking_tokens_est):,}</div>
|
| 313 |
</div>
|
| 314 |
<div style="background: rgba(255,255,255,0.2); padding: 12px; border-radius: 8px;">
|
| 315 |
<div style="opacity: 0.9; font-size: 12px; margin-bottom: 4px;">Total</div>
|
|
|
|
| 318 |
</div>
|
| 319 |
</div>
|
| 320 |
|
|
|
|
| 321 |
{thinking_html}
|
| 322 |
|
| 323 |
+
<!-- Answer -->
|
| 324 |
<div style="background: #ffffff; border: 2px solid #28a745; border-radius: 12px; padding: 24px; margin-bottom: 24px; box-shadow: 0 2px 4px rgba(40,167,69,0.1);">
|
| 325 |
<h3 style="margin: 0 0 16px 0; color: #28a745; font-size: 18px; font-weight: 600; display: flex; align-items: center; gap: 8px;">
|
| 326 |
<span style="font-size: 22px;">β
</span> Final Solution
|
|
|
|
| 330 |
</div>
|
| 331 |
</div>
|
| 332 |
|
|
|
|
| 333 |
{code_html}
|
| 334 |
|
| 335 |
</div>
|
|
|
|
| 337 |
return html
|
| 338 |
|
| 339 |
# Initialize model
|
| 340 |
+
print("π Initializing VibeThinker-1.5B...")
|
| 341 |
+
vibe_model = VibeThinkerModel()
|
| 342 |
|
| 343 |
+
def generate_solution(prompt, temperature=0.6, max_tokens=8192, max_thinking_tokens=4096, progress=gr.Progress()):
|
| 344 |
"""Generate and format solution with progress tracking"""
|
| 345 |
if not prompt.strip():
|
| 346 |
return "<p style='color: #dc3545; font-size: 16px; padding: 20px;'>β οΈ Please enter a problem to solve.</p>"
|
| 347 |
|
| 348 |
+
progress(0, desc="π Initializing...")
|
| 349 |
+
progress(0.2, desc="π§ Generating solution...")
|
| 350 |
|
|
|
|
| 351 |
response, prompt_tokens, completion_tokens, gen_time = vibe_model.generate_response(
|
| 352 |
prompt,
|
| 353 |
temperature=temperature,
|
| 354 |
+
max_new_tokens=max_tokens,
|
| 355 |
max_thinking_tokens=max_thinking_tokens
|
| 356 |
)
|
| 357 |
|
| 358 |
progress(0.8, desc="π Formatting output...")
|
| 359 |
|
|
|
|
| 360 |
thinking, answer, code_blocks = parse_model_output(response)
|
|
|
|
|
|
|
| 361 |
html_output = format_output_html(thinking, answer, code_blocks, prompt_tokens, completion_tokens, gen_time)
|
| 362 |
|
| 363 |
progress(1.0, desc="β
Complete!")
|
|
|
|
| 364 |
return html_output
|
| 365 |
|
| 366 |
# Create Gradio interface
|
| 367 |
with gr.Blocks(
|
| 368 |
+
theme=gr.themes.Soft(primary_hue="indigo", secondary_hue="purple"),
|
| 369 |
+
css=".gradio-container { max-width: 1400px !important; }"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 370 |
) as demo:
|
| 371 |
gr.Markdown("""
|
| 372 |
# π§ VibeThinker-1.5B Competitive Coding Assistant
|
| 373 |
|
| 374 |
**Optimized for**: Competitive programming (LeetCode, Codeforces, AtCoder) and algorithm challenges
|
| 375 |
|
| 376 |
+
π― **Best for**: Python algorithmic problems with clear input/output specifications
|
| 377 |
|
| 378 |
β οΈ **Note**: This model is specialized for competitive programming, not general software development
|
| 379 |
""")
|
|
|
|
| 388 |
|
| 389 |
with gr.Accordion("βοΈ Advanced Settings", open=False):
|
| 390 |
temperature_slider = gr.Slider(
|
| 391 |
+
minimum=0.0, maximum=1.0, value=0.6, step=0.1,
|
|
|
|
|
|
|
|
|
|
| 392 |
label="π‘οΈ Temperature (0.6 recommended)"
|
| 393 |
)
|
| 394 |
max_tokens_slider = gr.Slider(
|
| 395 |
+
minimum=1024, maximum=16384, value=8192, step=1024,
|
| 396 |
+
label="π Max New Tokens"
|
|
|
|
|
|
|
|
|
|
| 397 |
)
|
| 398 |
max_thinking_slider = gr.Slider(
|
| 399 |
+
minimum=512, maximum=8192, value=3072, step=512,
|
| 400 |
+
label="π§ Max Thinking Tokens (hint for prompt)"
|
|
|
|
|
|
|
|
|
|
| 401 |
)
|
| 402 |
|
| 403 |
gr.Markdown("""
|
| 404 |
**Tips:**
|
| 405 |
+
- Lower thinking tokens (1024-2048) for faster, direct solutions
|
| 406 |
+
- Higher thinking tokens (4096-8192) for complex reasoning
|
| 407 |
- Temperature 0.6 balances creativity and accuracy
|
| 408 |
+
- Automatic loop detection and truncation
|
|
|
|
| 409 |
""")
|
| 410 |
|
| 411 |
generate_btn = gr.Button("π Generate Solution", variant="primary", size="lg")
|
| 412 |
clear_btn = gr.Button("ποΈ Clear", size="sm")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 413 |
|
| 414 |
with gr.Column(scale=2):
|
| 415 |
output_html = gr.HTML(label="Solution")
|
| 416 |
|
|
|
|
| 417 |
generate_btn.click(
|
| 418 |
fn=generate_solution,
|
| 419 |
inputs=[prompt_input, temperature_slider, max_tokens_slider, max_thinking_slider],
|
|
|
|
| 422 |
|
| 423 |
clear_btn.click(
|
| 424 |
fn=lambda: ("", ""),
|
|
|
|
| 425 |
outputs=[prompt_input, output_html]
|
| 426 |
)
|
| 427 |
|
|
|
|
| 428 |
gr.Examples(
|
| 429 |
examples=[
|
| 430 |
["Write a Python function to find the maximum sum of a contiguous subarray (Kadane's Algorithm). Include edge cases and test with array [-2,1,-3,4,-1,2,1,-5,4]"],
|